Phonetic learning as a pathway to language: new data and native language magnet theory expanded (NLM-e)

Author:

Kuhl Patricia K12,Conboy Barbara T1,Coffey-Corina Sharon1,Padden Denise1,Rivera-Gaxiola Maritza12,Nelson Tobey1

Affiliation:

1. Institute for Learning and Brain Sciences, University of WashingtonSeattle, WA 98195, USA

2. Department of Speech and Hearing Sciences, University of WashingtonSeattle, WA 98195, USA

Abstract

Infants' speech perception skills show a dual change towards the end of the first year of life. Not only does non-native speech perception decline, as often shown, but native language speech perception skills show improvement, reflecting a facilitative effect of experience with native language. The mechanism underlying change at this point in development, and the relationship between the change in native and non-native speech perception, is of theoretical interest. As shown in new data presented here, at the cusp of this developmental change, infants' native and non-native phonetic perception skills predict later language ability, but in opposite directions. Better native language skill at 7.5 months of age predicts faster language advancement, whereas better non-native language skill predicts slower advancement. We suggest that native language phonetic performance is indicative of neural commitment to the native language, while non-native phonetic performance reveals un committed neural circuitry. This paper has three goals: (i) to review existing models of phonetic perception development, (ii) to present new event-related potential data showing that native and non-native phonetic perception at 7.5 months of age predicts language growth over the next 2 years, and (iii) to describe a revised version of our previous model, the native language magnet model, expanded (NLM-e). NLM-e incorporates five new principles. Specific testable predictions for future research programmes are described.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3