Biomechanical determinants of endothelial permeability assessed in standard and modified hollow-fibre bioreactors

Author:

Gray Stephen G.1,Weinberg Peter D.1ORCID

Affiliation:

1. Department of Bioengineering, Imperial College London, London SW7 2AZ, UK

Abstract

Effects of mechanical stress on the permeability of vascular endothelium are important to normal physiology and in the development of atherosclerosis. Here we elucidate novel effects using commercially available and modified hollow-fibre bioreactors, in which endothelial cells form confluent monolayers lining plastic capillaries with porous walls, contained in a cartridge. The capillaries were perfused with a near-aortic waveform, and permeability was assessed by the movement of rhodamine-labelled albumin from the intracapillary to the extracapillary space. Permeability was increased by acute application of shear stress and decreased by chronic shear stress compared with a static control: this has previously been shown only for multidirectional flows. Increasing viscosity reduced permeability under both acute and chronic shear; since shear rate remained unchanged, these effects resulted from altered shear stress. Reducing pulsatility increased permeability, contrary to the widely held assumption that flow which is highly oscillatory causes endothelial dysfunction. Chronic convection across the monolayer increased effective permeability more than could be explained by the addition of advective transport, contrary to results from previous acute experiments. The off-the-shelf and modified bioreactors provide an excellent tool for investigating the biomechanics of endothelial permeability and have revealed novel effects of flow duration, viscosity, pulsatility and transmural flow.

Funder

BHF

BHF Centre of Research

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3