Punctuated virus-driven succession generates dynamical alternations in CRISPR-mediated microbe-virus coevolution

Author:

Liaghat Armun12,Yang Jiayue3,Whitaker Rachel34ORCID,Pascual Mercedes256ORCID

Affiliation:

1. Department of Ecology and Evolution, University of Chicago , Chicago, IL, USA

2. Department of Biology, New York University , New York, NY, USA

3. Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, IL, USA

4. Department of Microbiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA

5. Department of Environmental Studies, New York University , New York, NY, USA

6. Santa Fe Institute , Santa Fe, NM, USA

Abstract

The coevolutionary dynamics of lytic viruses and microbes with CRISPR-Cas immunity exhibit alternations between sustained host control of viral proliferation and major viral epidemics in previous computational models. These alternating dynamics have yet to be observed in other host–pathogen systems. Here, we address the breakdown of control and transition to large outbreaks with a stochastic eco-evolutionary model. We establish the role of host density-dependent competition in punctuated virus-driven succession and associated diversity trends that concentrate escape pathways during control phases. Using infection and escape networks, we derive the viral emergence probability whose fluctuations of increasing size and frequency characterize the approach to large outbreaks. We explore alternation probabilities as a function of non-dimensional parameters related to the probability of viral escape and host competition. Our results demonstrate how emergent feedbacks between host competition and viral diversification render the host immune structure fragile, potentiating a dynamical transition to large epidemics.

Funder

Division of Biological Infrastructure

Gordon and Betty Moore Foundation

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3