Cells exploit a phase transition to mechanically remodel the fibrous extracellular matrix

Author:

Grekas Georgios1ORCID,Proestaki Maria2,Rosakis Phoebus34ORCID,Notbohm Jacob2,Makridakis Charalambos345,Ravichandran Guruswami6

Affiliation:

1. Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN, USA

2. Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA

3. Department of Mathematics and Applied Mathematics, University of Crete, Heraklion, Greece

4. Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion, Greece

5. Department of Mathematics, MPS, University of Sussex, Brighton, UK

6. Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA

Abstract

Through mechanical forces, biological cells remodel the surrounding collagen network, generating striking deformation patterns. Tethers—tracts of high densification and fibre alignment—form between cells, thinner bands emanate from cell clusters. While tethers facilitate cell migration and communication, how they form is unclear. Combining modelling, simulation and experiment, we show that tether formation is a densification phase transition of the extracellular matrix, caused by buckling instability of network fibres under cell-induced compression, featuring unexpected similarities with martensitic microstructures. Multiscale averaging yields a two-phase, bistable continuum energy landscape for fibrous collagen, with a densified/aligned second phase. Simulations predict strain discontinuities between the undensified and densified phase, which localizes within tethers as experimentally observed. In our experiments, active particles induce similar localized patterns as cells. This shows how cells exploit an instability to mechanically remodel the extracellular matrix simply by contracting, thereby facilitating mechanosensing, invasion and metastasis.

Funder

EU Horizon 2020

Vannevar Bush Faculty Fellowship

NSF

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3