Mechanics of tensegrity cell units incorporating asymmetry and insights into mollitaxis

Author:

Benvenuti E.1ORCID,Reho G. A.1ORCID,Palumbo S.2,Fraldi M.2ORCID

Affiliation:

1. Engineering Department, University of Ferrara, Ferrara, Italy

2. Department of Structures for Engineering and Architecture, University of Napoli Federico II, Napoli, Italy

Abstract

The mechanical response of a contractile cell anchored to the substrate through focal adhesions is studied by means of an asymmetric pre-strained tensegrity structure obeying a neo-Hookean stress–strain law. The aim is to assess the influence of overall asymmetric contraction on the cell durotaxis and on the growth of the focal adhesion plaque. The asymmetric kinematics of the system is obtained in two ways, that is by assuming a gradient of the substrate stiffness and through asymmetric buckling. Equivalent springs are purposely considered to represent the stiffness of the ensemble formed by the substrate, the focal adhesion plaque and the integrin ligands. Then, contraction results from elastic strains induced by competing polymerization and actomyosin contraction. The cell mechanical response in terms of durotaxis and its coupling with focal adhesion plaque growth is finally analysed with respect to the effects of asymmetry, gaining some insights into how this asymmetry could participate to redirect cell migration, both in terms of durotaxis and mollitaxis.

Funder

Ministero dell'Istruzione, dell'Università e della Ricerca

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3