Preparation and characterization of molecularly imprinted solid-phase extraction column coupled with high-performance liquid chromatography for selective determination of melamine

Author:

Zhou Q.1ORCID,Tan X. C.2,Guo X. J.1,Huang Y. J.1,Zhai H. Y.1

Affiliation:

1. Department of Pharmacy, GuangDong Pharmaceutical University, GuangZhou 510006, People's Republic of China

2. School of Chemistry and Chemical Engineering, GuangXi University for Nationalities, Nanning 530000, People's Republic of China

Abstract

We synthesized a selective molecularly imprinted solid-phase extraction (MIP-SPE) column and established an extraction and enrichment method using this MIP-SPE column. By coupling with HPLC, we developed a new method to detect trace amounts of melamine in eggs. The MIP-SPE column was synthesized by in situ thermal-initiated polymerization using melamine as the template, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker and azodiisobutyronitrile as the initiator. HPLC was used to evaluate the identification and enrichment capability of the MIP-SPE column and for the measurement of melamine in the sample. The melamine concentration exhibited an excellent linear relationship in the range of 0.1–25.0 µg ml −1 ( r = 0.9983). The identification capability of the MIP-SPE column was apparently superior to that of the non-imprinted polymer solid-phase extraction column; an average enrichment factor of 46.8-fold (RSD = 3.5%) was obtained for 0.4 µg ml −1 melamine by the MIP-SPE column. When the MIP-SPE HPLC method was applied to the detection of melamine in eggs, an average recovery rate of 93.5–102.0% (RSD = 3.6–4.9%) and a limit of detection of 0.05 µg kg −1 were obtained. This method is simple, fast and cost-effective; thus, it can greatly simplify the pre-treatment of complex samples and can be used in the detection of residual melamine in eggs and other products.

Funder

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3