The spatial and temporal patterning of the deep crust and implications for the process of melt extraction

Author:

Brown Michael1

Affiliation:

1. Laboratory for Crustal Petrology, Department of Geology, University of Maryland, College Park, MD 20742-4211, USA

Abstract

Volumetrically significant melt production requires crustal temperatures above approximately 800 ° C. At the grain scale, the former presence of melt may be inferred based on various microstructures, particularly pseudomorphs of melt pores and grain-boundary melt films. In residual migmatites and granulites, evidence of melt-extraction pathways at outcrop scale is recorded by crystallized products of melt (leucosome) and residual material from which melt has drained (melanosome). These features form networks or arrays that potentially demonstrate the temporal and spatial relations between deformation and melting. As melt volume increases at sites of initial melting, the feedback between deformation and melting creates a dynamic rheological environment owing to localization and strain-rate weakening. With increasing temperature, melt volume increases to the melt connectivity transition, in the range of 2–7 vol% melt, at which point melt may escape in the first of several melt-loss events, where each event represents a batch of melt that left the source and ascended higher in the crust. Each contributing process has characteristic length and time scales, and it is the nonlinear interactions and feedback relations among them that give rise to the dissipative structures and episodicity of melt-extraction events that are recorded as variations in the spatial and temporal patterning of the crust. Focused melt flow occurs by dilatant shear failure of low-melt fraction rocks creating melt-flow networks that allow accumulation and storage of melt, and form the link for melt flow from grain boundaries to veins allowing drainage to crustal-scale ascent conduits. Preliminary indications suggest that anatectic systems are strongly self-organized from the bottom up, becoming more ordered by decreasing the number and increasing the width of ascent conduits from the anatectic zone through the overlying subsolidus crust to the ductile-to-brittle transition zone, where the melt accumulates in plutons.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3