Wound healing in the liver with particular reference to stem cells

Author:

Alison Malcolm1,Golding Matthew1,Lalani El–Nasir1,Sarraf Catherine1

Affiliation:

1. Histopathology Department, Division of Investigative Science, Imperial College School of Medicine at Hammersmith Campus, Du Cane Road, LondonW12 0NN, UK

Abstract

The efficiency of liver regeneration in response to the loss of hepatocytes is widely acknowledged, and this is usually accomplished by the triggering of normally proliferatively quiescent hepatocytes into the cell cycle. However, when regeneration is defective, tortuous ductular structures, initially continuous with the biliary tree, proliferate and migrate into the surrounding hepatocyte parenchyma. In humans, these biliary cells have variously been referred to as ductular structures, neoductules and neocholangioles, and have been observed in many forms of chronic liver disease, including cancer. In experimental animals, similar ductal cells are usually called oval cells, and their association with impaired regeneration has led to the conclusion that they are the progeny of facultative stem cells. Oval cells are of considerable biological interest as they may represent a target population for hepatic carcinogens, and they may also be useful vehicles for ex vivo gene therapy for the correction of inborn errors of metabolism. This review proposes that the liver harbours stem cells that are located in the biliary epithelium, that oval cells are the progeny of these stem cells, and that these cells can undergo massive expansion in their numbers before differentiating into hepatocytes. This is a conditional process that only occurs when the regenerative capacity of hepatocytes is overwhelmed, and thus, unlike the intestinal epithelium, the liver is not behaving as a classical, continually renewing, stem cell–fed lineage. We focus on the biliary network, not merely as a conduit for bile, but also as a cell compartment with the ability to proliferate under appropriate conditions and give rise to fully differentiated hepatocytes and other cell types.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3