Investigation of airborne spread of COVID-19 using a hybrid agent-based model: a case study of the UK

Author:

Rahaman Hafijur1,Barik Debashis1ORCID

Affiliation:

1. School of Chemistry, University of Hyderabad, Central University PO, Hyderabad 500046, Telangana, India

Abstract

Agent-based models have been proven to be quite useful in understanding and predicting the SARS-CoV-2 virus-originated COVID-19 infection. Person-to-person contact was considered as the main mechanism of viral transmission in these models. However, recent understanding has confirmed that airborne transmission is the main route to infection spread of COVID-19. We have developed a computationally efficient agent-based hybrid model to study the aerial propagation of the virus and subsequent spread of infection. We considered virus, a continuous variable, spreads diffusively in air and members of populations as discrete agents possessing one of the eight different states at a particular time. The transition from one state to another is probabilistic and age linked. Recognizing that population movement is a key aspect of infection spread, the model allows unbiased movement of agents. We benchmarked the model to recapture the temporal stochastic infection count data of the UK. The model investigates various key factors such as movement, infection susceptibility, new variants, recovery rate and duration, incubation period and vaccination on the infection propagation over time. Furthermore, the model was applied to capture the infection spread in Italy and France.

Funder

Science and Engineering Research Board

Publisher

The Royal Society

Subject

Multidisciplinary

Reference89 articles.

1. A novel coronavirus outbreak of global health concern

2. WHO. 2020 Report of the WHO-China Joint Mission on Coronavirus Disease 2019. Geneva Switzerland: WHO.

3. World Health Organization (WHO). 2023 Covid-19 database. See https://covid19.who.int.

4. Global socio-economic losses and environmental gains from the Coronavirus pandemic

5. Ranking the effectiveness of worldwide COVID-19 government interventions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3