Variable-order particle dynamics: formulation and application to the simulation of edge dislocations

Author:

Patnaik Sansit1,Semperlotti Fabio1ORCID

Affiliation:

1. School of Mechanical Engineering, Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN 47907, USA

Abstract

This study presents the application of variable-order (VO) fractional operators to modelling the dynamics of edge dislocations under the effect of a static state of shear stress. More specifically, a particle dynamic approach is used to simulate the microscopic structure of a material where the constitutive atoms or molecules are modelled via discrete masses and their interaction via inter-particle forces. VO operators are introduced in the formulation in order to capture the complex linear-to-nonlinear dynamic transitions following the translation of dislocations as well as the creation and annihilation of bonds between particles. Remarkably, the motion of the dislocation does not require any a priori assumption in terms of either possible trajectory or sections of the model that could undergo the nonlinear transition associated with the creation and annihilation of bonds. The model only requires the definition of the initial location of the dislocations. Results will show that the VO formulation is fully evolutionary and capable of capturing both the sliding and the coalescence of edge dislocations by simply exploiting the instantaneous response of the system and the state of stress. This article is part of the theme issue ‘Advanced materials modelling via fractional calculus: challenges and perspectives’.

Funder

Defense Advanced Research Projects Agency

National Science Foundation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3