Cytochemical and ultrastructural differences between intraspecific compatible and incompatible pollinations inRaphanus

Author:

Abstract

Examination of the behaviour of pollen on the style ofRaphanus, following compatible and incompatible intraspecific pollinations, has revealed the self-incompatibility system in this species to be composed of at least three stages. The first, on which no information has been obtained in this study, involves the germination of the grain. The second stage concerns the ability of the pollen tube to penetrate the cuticle of the stigmatic papilla. It is possible that cutinase is deficient in incompatible pollen tubes but, in most instances, the outer layers of the stigmatic wall are penetrated. The third stage involves the interaction of substances secreted by the pollen tube with products of the stigmatic cytoplasm. The interaction is swiftly followed by the deposition, in the stigma, of a layered callosic body. This is formed immediately under the point of penetration and takes about 6 h to develop fully. Development of the pollen tube ceases as the first layers of callose are laid down. It is possible that the substances in the pollen responsible for the initiation of the second two stages are held in the tapetally synthesized tryphine, thus accounting for the sporophytic control of pollen compatibility in this species. The mature stigma contains large numbers of crystalline protein bodies, but it is not known whether they play any role in the self-incompatibility system.

Publisher

The Royal Society

Subject

General Medicine

Reference36 articles.

1. Self incompatibility systems in angiosperms III. Cruciferae. Heredity;Bateman A. J.;Lond.,1955

2. Die Selbsterilitat bon Cardamine wise;Beatus R.;Bot.,1934

3. Protein bodies in Bryopsis hypnoides: their relationship to wound healing and branch septum development;Burr F. A.;Res.,1970

4. Correns C. 1912 Selbsterilitat und Individualstoffe. Festschr. med: naturwiss. Oes. 84 Versdeutsch Naturforsch. u.Arzte. pp. 186-217.

5. P PROTEIN IN THE PHLOEM OF CUCURBITA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3