A theory for cerebral neocortex

Author:

Abstract

It is proposed that the learning of many tasks by the cerebrum is based on using a very few fundamental techniques for organizing information. It is argued that this is made possible by the prevalence in the world of a particular kind of redundancy, which is characterized by a ‘Fundamental Hypothesis’. This hypothesisis used to found a theory of the basic operations which, it is proposed, are carried out by the cerebral neocortex. They involve the use of past experience to form so-called ‘classificatory units’ with which to interpret subsequent experience. Such classificatory units are imagined to be created whenever either something occurs frequently in the brain’s experience, or enough redundancy appears in the form of clusters of slightly differing inputs. A(non-Bayesian) information theoretic account is given of the diagnosis of an input as an instance of an existing classificatory unit, and of the interpretation as such of an incompletely specified input. Neural models are devised to implement the two operations of diagnosis and interpretation, and it is found that the performance of the second is an automatic consequence of the model’s ability to perform the first. The discovery and formation of new classificatory units is discussed within the context of these neural models. It is shown how a climbing fibre input (of the kind described by Cajal) to the correct cell can cause that cell to perform a mountain-climbing operation in an underlying probability space, that will lead it to respond to a class of events for which it is appropriate to code. This is called the ‘spatial recognizer effect’. The structure of the cerebral neocortex is reviewed in the light of the model which the theory establishes. It is found that many elements in the cortex have a natural identification with elements in the model. This enables many predictions, with specified degrees of firmness, to be made concerning the connexions and synapses of the following cortical cells and fibres: Martinotti cells; cerebral granule cells; pyramidal cells of layers III, V and II; short axon cells of all layers, especially I, IV and VI; cerebral climbing fibres and those cells of the cortex which give rise to them; cerebral basket cells; fusiform cells of layers VI and VII. It is shown that if rather little information about the classificatory units to be formed has been coded genetically, it may be necessary to use a technique called codon formation to organize structure in a suitable way to represent a new unit. It is shown that under certain conditions, it is necessary to carry out a part of this organization during sleep. A prediction is made about the effect of sleep on learning of a certain kind.

Publisher

The Royal Society

Subject

General Medicine

Reference29 articles.

1. Hippocampus of the Brain: Recurrent Inhibition in the Hippocampus with Identification of the Inhibitory Cell and its Synapses

2. In h ib ito ry syn apses on som as o f Purkinje cells in th e cerebellum . Nature;Anderson P .;Lord.,1963

3. Barlow H . B . 1961 P ossible principles underlying th e transform ations o f sensory m essages. In Sensory Communication (Ed. W . A. Rosenblith) pp. 217-234. MIT and W iley.

4. How the Cerebellum may be Used

5. Nerve net models of plausible size that perform many simple learning tasks

Cited by 371 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3