Second-order optimization strategies for neural network quantum states

Author:

Drissi M.1ORCID,Keeble J. W. T2ORCID,Rozalén Sarmiento J.34ORCID,Rios A.234ORCID

Affiliation:

1. TRIUMF , Vancouver, British Columbia V6T 2A3, Canada

2. Department of Physics, University of Surrey , Guildford, GU2 7XH, UK

3. Departament de Física Quàntica i Astrofísica, Universitat de Barcelona (UB) , c. Martí i Franquès 1, Barcelona E08028, Spain

4. Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (UB) , Barcelona, Spain

Abstract

The Variational Monte Carlo (VMC) method has recently seen important advances through the use of neural network quantum states. While more and more sophisticated ansatze have been designed to tackle a wide variety of quantum many-body problems, modest progress has been made on the associated optimization algorithms. In this work, we revisit the Kronecker-Factored Approximate Curvature (KFAC), an optimizer that has been used extensively in a variety of simulations. We suggest improvements in the scaling and the direction of this optimizer and find that they substantially increase its performance at a negligible additional cost. We also reformulate the VMC approach in a game theory framework, to propose a novel optimizer based on decision geometry. We find that on a practical test case for continuous systems, this new optimizer consistently outperforms any of the KFAC improvements in terms of stability, accuracy and speed of convergence. Beyond VMC, the versatility of this approach suggests that decision geometry could provide a solid foundation for accelerating a broad class of machine learning algorithms. This article is part of the theme issue 'The liminal position of Nuclear Physics: from hadrons to neutron stars'.

Funder

Science and Technology Facilities Council

Ministerio de Ciencia e Innovación

National Research Council Canada

Publisher

The Royal Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Second-order optimization strategies for neural network quantum states;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3