Synapse-specific structural plasticity that protects and refines local circuits during LTP and LTD

Author:

Harris Kristen M.1ORCID,Kuwajima Masaaki1ORCID,Flores Juan C.2ORCID,Zito Karen2ORCID

Affiliation:

1. Department of Neuroscience and Center for Learning and Memory, The University of Texas at Austin , Austin, TX 78712, USA

2. Center for Neuroscience, University of California , Davis, CA 95618, USA

Abstract

Synapses form trillions of connections in the brain. Long-term potentiation (LTP) and long-term depression (LTD) are cellular mechanisms vital for learning that modify the strength and structure of synapses. Three-dimensional reconstruction from serial section electron microscopy reveals three distinct pre- to post-synaptic arrangements: strong active zones (AZs) with tightly docked vesicles, weak AZs with loose or non-docked vesicles, and nascent zones (NZs) with a postsynaptic density but no presynaptic vesicles. Importantly, LTP can be temporarily saturated preventing further increases in synaptic strength. At the onset of LTP, vesicles are recruited to NZs, converting them to AZs. During recovery of LTP from saturation (1–4 h), new NZs form, especially on spines where AZs are most enlarged by LTP. Sentinel spines contain smooth endoplasmic reticulum (SER), have the largest synapses and form clusters with smaller spines lacking SER after LTP recovers. We propose a model whereby NZ plasticity provides synapse-specific AZ expansion during LTP and loss of weak AZs that drive synapse shrinkage during LTD. Spine clusters become functionally engaged during LTP or disassembled during LTD. Saturation of LTP or LTD probably acts to protect recently formed memories from ongoing plasticity and may account for the advantage of spaced over massed learning. This article is part of a discussion meeting issue ‘Long-term potentiation: 50 years on’.

Funder

National Institute of Mental Health

Division of Biological Infrastructure

National Institute of Neurological Disorders & Stroke

Publisher

The Royal Society

Reference145 articles.

1. Sur la structure de l’ecorce cerebrale de quelques mammiferes;Ramón Y Y;Cellule,1891

2. Las espinas colaterales de las celulas del cerebro tenidas por el azul de metileno;Ramón Y;Revista Trimestral Microgratica,1896

3. Spine dynamics in the brain, mental disorders and artificial neural networks

4. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path

5. Chapter 17 Chapter The nature and causes of hippocampal long-term potentiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Long-term potentiation: 50 years on: past, present and future;Philosophical Transactions of the Royal Society B: Biological Sciences;2024-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3