Strongyloides ratti infection in mice: immune response and immune modulation

Author:

Breloer Minka12ORCID,Linnemann Lara1

Affiliation:

1. Section of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg 20359, Germany

2. Department of Biology, University of Hamburg, Hamburg 20156, Germany

Abstract

Strongyloides ratti is a natural parasite of wild rats and most laboratory mouse strains are also fully permissive. The infection can be divided into three distinct phases: the tissue migration of the infective third stage larvae during the first two days, the early intestinal establishment of S. ratti parasites molting to adults on days three to six and the later intestinal parasitic phase until the end of infection. Immunocompetent mice terminate the S. ratti infection after one month and are semi-resistant to a second infection. Employing the powerful tools of mouse immunology has facilitated a detailed analysis of the initiation, execution and regulation of the immune response to S. ratti . Here we review the information collected to date on the protective immune response to migrating S. ratti larvae in tissues and to adult parasites in the intestine. We show that depending on the phase of infection, a site-specific portfolio of immune effector mechanisms is required for infection control. In addition, we summarize the strategies employed by S. ratti to evade the immune system and survive long enough in its host to replicate despite an effective immune response. Selected murine studies using the closely related Strongyloides venezuelensis will be discussed. This article is part of the Theo Murphy meeting issue ‘ Strongyloides : omics to worm-free populations’.

Funder

Deutsche Forschungsgemeinschaft

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strongyloides : omics to worm-free populations;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3