Nano-laponite/polymer composite as filtration reducer on water-based drilling fluid and mechanism study

Author:

Dong Xiaodong12ORCID,Sun Jinsheng12,Huang Xianbin12,Lv Kaihe12,Zhou Zhishi3,Gao Chongyang12

Affiliation:

1. School of Petroleum Engineering in China University of Petroleum (East China), Qingdao 266580, People's Republic of China

2. Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, Qingdao 266580, People's Republic of China

3. Petro China Tarim Oilfield Company, Korla, Xinjiang 841000, People's Republic of China

Abstract

In drilling deep complex formations, most drilling fluid additives have insufficient temperature and salt tolerance, resulting in the decline of drilling fluid performance. This study used 2-acrylamide-2-methylpropane sulfonic acid, acrylamide, dimethyl diallyl ammonium chloride and modified nano-laponite to synthesize a nanocomposite filtrate reducer (ANDP) with excellent temperature and salt resistance, which can maintain the performance of drilling fluid. The structure of ANDP was analysed by a transmission electron microscope and an infrared spectrometer. The thermal stability of ANDP was studied by thermogravimetric analysis. The performance of ANDP was evaluated in a water-based drilling fluid. The mechanism was analysed per clay particle size distribution, Zeta potential, filter cake permeability and scanning electron microscopy imaging. The results show that ANDP has good thermal stability and the expected molecular structure. The filtration of freshwater drilling fluid after ageing at 200°C is 10.4 ml and that of saturated brine drilling fluid is 6.4 ml after ageing at 150°C. Mechanism analysis suggests that the ANDP increases the thickness of clay particle hydration layer and maintains the colloidal stability of the drilling fluid. ANDP inhibits the agglomeration of clay particles and significantly reduces the filtration by forming dense mud cake.

Funder

National Natural Science Foundation of China

CNPC

research and development plan of Shandong Province

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3