A new approach for quantifying epithelial and stromal thickness changes after orthokeratology contact lens wear

Author:

Ran Ziying1ORCID,Moore Joshua12,Jiang Fan3,Guo Hongmei4,Eliasy Ashkan1,Lopes Bernardo T.15,Bao FangJun3,Jiang Jun3,Abass Ahmed16ORCID,Elsheikh Ahmed178

Affiliation:

1. School of Engineering, University of Liverpool, Liverpool, UK

2. Department of Mathematical Sciences, School of Physical Sciences, University of Liverpool, Liverpool, UK

3. Eye Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China

4. College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan City, Shanxi Province, People's Republic of China

5. Federal University of São Paulo, 1500 Vila Clementino, São Paulo 04021-001, Brazil

6. Department of Production Engineering and Mechanical Design, Faculty of Engineering, Port Said University, Port Fuad, Egypt

7. Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, People's Republic of China

8. National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK

Abstract

The aim of the study was to develop an automatic segmentation approach to optical coherence tomography (OCT) images and to investigate the changes in epithelial and stromal thickness profile and radius of curvature after the use of orthokeratology (Ortho-K) contact lenses. A total of 45 right eyes from 52 participants were monitored before, and after one month of, uninterrupted overnight Ortho-K lens wear. The tomography of their right eyes was obtained using optical OCT and rotating Scheimpflug imaging (OCULUS Pentacam). A custom-built MATLAB code for automatic segmentation of corneal OCT images was created and used to assess changes in epithelial thickness, stromal thickness, corneal and stromal profiles and radii of curvature before, and after one month of, uninterrupted overnight wear of Ortho-K lenses. In the central area (0–2 mm diameter), the epithelium thinned by 12.8 ± 6.0 µm (23.8% on average, p < 0.01) after one month of Ortho-K lens wear. In the paracentral area (2–5 mm diameter), the epithelium thinned nasally and temporally (by 2.4 ± 5.9 µm, 4.5% on average, p = 0.031). The stroma thickness increased in the central area (by 4.8 ± 16.1 µm, p = 0.005). The radius of curvature of the central corneal anterior surface increased by 0.24 ± 0.26 mm (3.1%, p < 0.01) along the horizontal meridian and by 0.34 ± 0.18 mm (4.2%, p < 0.01) along the vertical meridian. There were no significant changes in the anterior and posterior stromal radius of curvature. This study introduced a new method to automatically detect the anterior corneal surface, the epithelial posterior surface and the posterior corneal surface in OCT scans. Overnight wear of Ortho-K lenses caused thinning of the central corneal epithelium. The anterior corneal surface became flattered while the anterior and posterior surfaces of the stroma did not undergo significant changes. The results are consistent with the changes reported in previous studies. The reduction in myopic refractive error caused by Ortho-K lens wear was mainly due to changes in corneal epithelium thickness profile.

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3