Acoustic streaming in liquids

Author:

Abstract

It has been suggested by Eckart (1948), Liebermann (1949) and others that measurement of acoustic streaming in a fluid provides an independent means of evaluating the ratio of the second coefficient of viscosity to the coefficient of shear viscosity. Arguments are put forward here to support the view (Nyborg 1953) that the streaming velocity is directly dependent on the coefficient of sound absorption. The second coefficient of viscosity influences the velocity of streaming only through its relationship to the coefficient of sound absorption. It is concluded that measurements of streaming velocity do not yield information about the second coefficient of viscosity other than may be obtained from the direct measurement of sound absorption. The theory of streaming based on the gradient of radiation pressure has been established quantitatively by a solution of the Navier-Stokes equations. A description is given of a method of determining the sound-absorption coefficient of a liquid from measurements of the velocity of streaming, and some typical results are stated.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3