Affiliation:
1. Department of Physics and Astronomy, Western Kentucky University, 1906 College Heights Blvd. Bowling Green, KY 42101, USA
2. Department of Physics and Astronomy, University of Texas-Rio Grande Valley, Edinburg, TX 78539, USA
Abstract
Recent developments in graphene related materials including molybdenum disulfide (MoS2) is gaining popularity as efficient and cost-effective nanoscale electrocatalyst essential for hydrogen production. These “clean” energy technologies require delicate control
over geometric, morphological, chemical and electronic structure affecting physical and electrochemical catalytic properties. In this work, we prepared three-dimensional hierarchical mesoporous aerogels consisting of two-dimensional functionalized graphene and MoS2 nanosheets of
varying ratio of components under hydrothermal–solvothermal conditions (P <20 bar, T <200 °C). We systematically characterized these hybrid aerogels in terms of surface morphology, microstructure, understand heterointerfaces interaction through electron microscopy,
X-ray diffraction, optical absorption and emission and Raman spectroscopy, besides electrochemical properties prior to and post electrochemical desulfurization that induces finely controlled sulfur vacancies. They feature enhanced electrical conductivity by means of eliminating contact resistance
and meso-/nanoporous structure facilitating faster ion diffusion (mass transport). We demonstrate that controlled defects density, edges plane sites (nanowalls), mesoscale porosity and topological interconnectedness (monolithic aerogel sheets) invoked can accelerate electrocatalytic hydrogen
production. For instance, low over potential with Tafel slope ~77 mV·dec-1 for 60 wt.% MoS2, highcurrent density, and good stability was achieved with desulfurization. These results are compared with continuous multilayer MoS2 films highlighting the multiple role
of tunable structure and electronic properties. The adjacent S-vacancy defectsinduced increase in density of states, dissociation and confinement of water molecules at the pore edge and planar S-vacancy sites calculated using density functional theory helped in establishing improved heterogeneous
electrocatalytic rate. This is supported with combined measurements of diffusion coefficient and heterogeneous electron transfer rate via surface-sensitive scanning electrochemical microscopy (SECM) technique.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献