Affiliation:
1. Department of Oral and Maxillofacial Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
Abstract
Dental restorative materials are widely used to repair teeth and dentition defects. However, the dental restorative materials tend to react with oral bacteria when they are exposed to oral conditions, which leads to a change in the oral microecology. Herein, we have employed molecular
dynamics simulations to investigate the interaction between different dental restorative materials and oral bacteria. It was found that the staphylococcal protein A (SPA) is more likely to attach on the surface of silicon carbide (SiC) substrate than hematite (Fe2O3)
substrate surface. Furthermore, the tightly adhesion and accumulation of SPA on SiC surface changes the molecular structure of SPA, which will induce a change in the oral microecology. This study has demonstrated that the adhesion and molecular structure of oral bacteria is strongly dependent
on dental restorative materials by molecular dynamics simulations, and Fe2O3 is more suitable to be a dental restorative material. It is therefore believed that molecular dynamics simulations can be used to further screen suitable materials for oral rehabilitation.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献