Paclitaxel Loaded Hyaluronic Acid Polymerized Nanoparticles Designed for Ovarian Cancer Therapy

Author:

Yang Bowen1,Huang Luyao2,Zhou Zishuo2,Yin Shanmei2,Xi Mingrong1

Affiliation:

1. Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China

2. Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China

Abstract

We aimed to develop an ovarian cancer-directed drug delivery system based on the high affinity of hyaluronic acid for CD44. The effects and mechanisms of hyaluronic acid-containing nanoparticles were investigated. The expression of CD44 in ovarian cancer was also determined. Hyaluronic acid polymerized nanoparticles (HANPs), FITC-HANPs, and paclitaxel (PTX)-HANPs were prepared, and their characteristics were evaluated. The in vitro targetability and cytotoxicity properties of PTX-HANPs were evaluated through in vitro drug uptake and cytotoxicity assays. The mechanisms of PTX-HANPs activity were investigated by apoptosis, wound healing, and Transwell invasion assays. In vivo targeting properties of HANPs were observed using a mouse ID8 subcutaneous model. in vitro experiments revealed an improved uptake of FITC-HANPs. The cytotoxicity of PTX-HANPs in A2780/CP70 and ID8 cells was higher than that of PTX alone. PTX-HANPs increased cell apoptosis in a dose-dependent manner and exhibited a similar ability as PTX to inhibit cell migration. Furthermore, HANPs did not promote A2780/CP70 or ID8 cell migration and showed limited inhibitory effects on their invasion. In vivo drug tracing experiments demonstrated the targetability of FITC-HANPs. In conclusion, PTX-HANPs improved PTX targetability and exhibited potent tumor-specific therapeutic activities. It may be considered a promising formulation for the preclinical development of agents targeting epithelial ovarian cancer.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Reference46 articles.

1. Cancer statistics, 2022;Siegel;CA: A Cancer Journal for Clinicians,2022

2. High-grade serous ovarian cancer: Basic sciences, clinical and therapeutic standpoints;Lisio;International Journal of Molecular Sciences,2019

3. Biomarkers in ovarian cancer: To be or not to be;Arend;Cancer,2019

4. Paclitaxel-based chemotherapy targeting cancer stem cells from mono- to combination therapy;Nawara;Biomedicines,2021

5. Re-visiting hypersensitivity reactions to taxanes: A comprehensive review;Picard;Clinical Reviews in Allergy & Immunology,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3