Dexmedetomidine Inhibits Acute Lung Injury by Upregulating miR-144 Expression in Mice

Author:

Deng Liqiang1,Zhao Min2,Wang Yihao3,Wang Xujian1,Liu Juan1

Affiliation:

1. Shandong Provincial Maternal and Child Health Care Hospital, Jinan 250014, China

2. Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao 266000, China

3. Qingdao Municipal Hospital, Qingdao 266000, China

Abstract

The understanding of lung injury’s mechanisms at the molecular level is not fully completed. MicroR-NAs (miRNAs), which are part of different pathophysiological processes, are essential biological regulators that operate by suppressing target genes. A mouse model of acute lung injury (ALI), which is triggered by lipopolysaccharide (LPS), was used to analyze miR-144 level in the ALI mice with or without dexmedetomidine treatment. Inflammation was investigated by the ratio of wet weight’s value to dry weight (W/D) of the lung, the release of cytokines TNF-α, cytokines IL-6, and cytokines IL-1β, and MPO activity. To validate the effect of dexmedetomidine on miR-144, overex-pression and knockdown of miR-144 were applied to treat antagomir144 and agomir144. The result suggested that LPS-triggered ALI was alleviated by dexmedetomidine. miR-144 was downregulated in ALI mice. The knockdown of miR-144 attenuated the protection of dexmedetomidine to acute lung injury. Overexpression of miR-144 attenuated the ALI, which was induced by LPS.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3