Serum Amyloid A Aggravates Lipopolysaccharide-Induced Injury of BEAS-2B Cells by Activating Toll-Like Receptor 2/Activator Protein-1 Signaling

Author:

Yang Shiming1,Qin Yumei2,Ding Li3,Wang Jiangbo2,Zhao Haiqing2

Affiliation:

1. Department of Pediatrics, People’s Hospital of Jianshui County, Honghe Prefecture, Yunnan Province 654399, China

2. Department of Pharmacy, Nanxishan Hospital of Guangxi Zhuang Autonomous Region (The Second People’s Hospital of Guangxi Zhuang Autonomous Region), Guilin, Guangxi Province 541000, China

3. Department of Internal Medicine, People’s Hospital of Jianshui County, Honghe Prefecture, Yunnan Province 654399, China

Abstract

The serum amyloid A (sAA) is a common sensitive indicator for the diagnosis of infectious diseases, and sAA levels are increased in pneumonia. However, the detailed molecular mechanism is unknown. Previous studies have demonstrated the participation of Toll-like receptor (TLR) 2 and its downstream protein activator protein-1 (AP-1) in inflammatory lung injury. This study aimed to investigate the effect of sAA on LPS-induced BEAS-2B cells injury and uncover the possible mechanism. The human bronchial epithelial cell line BEAS-2B was exposed to sAA with or without lipopolysaccharide (LPS) treatment, then cell viability, inflammation and apoptosis were evaluated. The effects of TLR2 knockout on sAA + LPS-treated BEAS-2B cells were also determined. Results revealed that sAA treatment reduced cell viability in a concentration-dependent manner and the effect of 500 nM sAA on cell viability was approximately equivalent to LPS. The levels of inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-8, monocyte chemotactic protein (MCP)-1 and IL-6 as well as cell apoptosis and expression of proteins related to apoptosis were significantly increased upon sAA or LPS stimulation. The expression of TLR2 and AP-1 was also elevated in cells challenged with sAA or LPS. Besides, sAA and LPS co-treatment further enhanced the actions of LPS. However, the knockdown of TLR2 obviously blunted the effects of LPS and sAA co-treatment on cell viability, inflammation and apoptosis. Taken together, our results revealed that sAA could exert an enhanced effect on LPS-induced BEAS-2B cells injury via promoting TLR2/AP-1 expression.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3