Blood Flow Mediated Hybrid Nanoparticles in Human Arterial System: Recent Research, Development and Applications

Author:

Tripathi Jayati1,Vasu B.1,Subba Reddy Gorla Rama2,Chamkha Ali J.3,Murthy P. V. S. N.4,Anwar Bég O.5

Affiliation:

1. Department of Mathematics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, U.P., India

2. Department of Aeronautics and Astronautics, Air Force Institute of Technology, Wright Patterson Air Force Base, Dayton, Ohio, 45433, USA

3. Faculty of Engineering, Kuwait College of Science and Technology, Doha District, 35004, Kuwait

4. Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India

5. Department of Mechanical and Aeronautical Engineering, Salford University, Salford, M54WT, UK

Abstract

Blood flow dynamics contributes an elemental part in the formation and expansion of cardiovascular diseases in human body. Computational simulation of blood flow in the human arterial system has been widely used in recent decades for better understanding the symptomatic spectrum of various diseases, in order to improve already existing or develop new therapeutic techniques. The characteristics of the blood flow in an artery can be changed significantly by arterial diseases, such as aneurysms and stenoses. The progress of atherosclerosis or stenosis in a blood vessel is quite common which may be caused due to the addition of lipids in the arterial wall. Nanofluid is a colloidal mixture of nanometer sized (which ranges from 10–100 m) metallic and non-metallic particles in conventional fluid (such as water, oil). The delivery of nanoparticles is an interesting and growing field in the development of diagnostics and remedies for blood flow complications. An enhancement of nano-drug delivery performance in biological systems, nanoparticles properties such as size, shape and surface characteristics can be regulated. Nanoparticle offers remarkably advantages over the traditional drug delivery in terms of high specificity, high stability, high drug carrying capacity, ability for controlled release. Highly dependency has been found for their behavior under blood flow while checking for their ability to target and penetrate tissues from the blood. In the field of nano-medicine, organic (including polymeric micelles and vesicles, liposomes) and inorganic (gold and mesoporous silica, copper) nanoparticles have been broadly studied as particular carriers because as drug delivery systems they delivered a surprising achievement as a result of their biocompatibility with tissue and cells, their subcellular size, decreased toxicity and sustained release properties. For the extension of nanofluids research, the researchers have also tried to use hybrid nanofluid recently, which is synthesized by suspending dissimilar nanoparticles either in mixture or composite form. The main idea behind using the hybrid nanofluid is to further improve the heat transfer and pressure drop characteristics. Nanoparticles are helpful as drug carriers to minimize the effects of resistance impedance to blood flow or coagulation factors due to stenosis. Discussed various robust approaches have been employed for the nanoparticle transport through blood in arterial system. The main objective of the paper is to provide a comprehensive review of computational simulations of blood flow containing hybrid-nanoparticles as drug carriers in the arterial system of the human body. The recent developments and analysis of convective flow of particle-fluid suspension models for the axi-symmetric arterial bodies in hemodynamics are summarized. Detailed existing mathematical models for simulating blood flow with nanoparticles in stenotic regions are reviewed. The review focuses on selected numerical simulations of physiological convective flows under various stenosis approximations and computation of the temperature, velocity, resistance impedance to flow, wall shear stress and the pressure gradient with the corresponding boundary conditions. The current review also highlights that the drug carrier nanoparticles are efficient mechanisms for reducing hemodynamics of stenosis and could be helpful for other biomedical applications. The review considers flows through various stenoses and the significances of numerical fluid mechanics in clinical medicine. The review examines nano-drug delivery systems, nanoparticles and describes recent computational simulations of nano-pharmacodynamics.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3