Comparative Study of Iris and Retinal Images for Early Detection of Diabetic Mellitus

Author:

Padmasini N.,Umamaheswari R.,Kalpana R.,Sikkandar Mohamed Yacin

Abstract

The recent increase in the number of diabetic cases due to genetic reasons or sedentary lifestyle, necessitates urgent need for an effective glucose monitoring system. Certainly, periodic glucose level monitoring in the blood will prevent from entering chronic diabetic condition and a noninvasive monitoring tool leads to a simple and automated diagnosis procedure. In this present work, an iridology-based diagnosis of diabetes has been discussed and is compared with a standard retinal imaging modality. Two subject groups, one group of 30 subjects without diabetes, the other group with 20 subjects of controlled diabetes with less than two years duration and 25 subjects with more than two years of uncontrolled diabetes were evaluated. Iris images are acquired using an iriscope and subsequently compared it with that of retinal spectral domain optical coherence tomography (SDOCT) images of the same subjects. The segmentation of the pancreas region in the iris images and the retinal layers in the SDOCT retinal images are performed automatically to predict Diabetic Mellitus (DM). The selected features of the segmented region are given as input to k-Nearest Neighbor, Support Vector Machine and Random Forest classifiers for discriminating diabetic and non-diabetic normal cases. The results showed that iris images are able to reveal the diabetic condition of the subjects even before their retina could reveal the same. However, elaborate extensive studies have to be carried out in order to validate iridology as a best noninvasive tool for detection of diabetes at the early stage itself.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3