Celecoxib Attenuates Cartilage Matrix Damage in Arthritis Rats by Inhibiting NF-κ B

Author:

Du Lukuan,Jiang Zhenghui,Wang Zhaohui,Wang Liming

Abstract

Objective: Celecoxib selectively inhibits the activity of COX-2 and the production of prostaglandin (PG), and plays a therapeutic role in treating osteoarthritis (OA). NF-κB signaling and IL-1α and TNFα are involved in OA pathogenesis. This study explored whether Celecoxib might exert therapeutic effects on OA through regulating NF-κB signaling and IL-1β and TNF release in OA rat model. Method : The contents of MMP-13, Hyp, IL-1β and TNFα in synovial fluid were detected by ELISA. The protein expressions of NF-κ B p-p65, COL2A1 and the activity of caspase-3 were detected. OA model rats were separated into OA group and OA+ Celecoxib group followed by analysis of MMP-13, Hyp, IL-1β and TNF level in articular fluid by ELISA and p-p65 and COL2A1 level and caspase-3 activity by western blot. Rat cartilage tissue was cultured and divided into control group, LPS group and LPS+ Celecoxib group followed by analysis of expressions of p-p65 and COL2A1 in cartilage tissue, IL-1 and TNF content in culture supernatant, and chondrocyte apoptosis. Results: Compared with Sham group, p-p65 expression and caspase-3 activity in cartilage tissue of OA rats was increased and COL2A1 level was reduced. Meanwhile the expression of MMP-13, Hyp, IL-1β and TNF in articular fluid of OA rats was increased. Compared to OA group, p-p65 expression and caspase-3 activity was decreased and COL2A1 expression was increased in OA+ Celecoxib treatment group along with decreased MMP-13, Hyp, IL-1β and TNF level in articular fluid. p-p65 expression and caspase-3 activity in LPS group was increased and COL2A1 expression was decreased with increased IL-beta; and TNF content. Compared to LPS group, p-p65 expression and caspase-3 activity was decreased and COL2A1 expression was increased in LPS+ Celecoxib group with decreased content of IL-1β and TNFα. Conclusion: Celecoxib can protect cartilage in OA by inhibiting NF-κB activation and IL-1β and TNF release, and decreasing cell apoptosis in inflammatory environment.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3