Novel Bioengineered Antibacterial and Anticancer ZnO Nanoparticles

Author:

Al-Harthi Helal F.1,Baker Abu2,Elgorban Abdallah M.1,Bahkali Ali H.1,Shaikh Ayaz Mukarram3,Kovács Béla3,Khan Mohd Sajid2,Syed Asad1

Affiliation:

1. Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia

2. Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow 226026, India

3. Institute of Food Science, University of Debrecen, Boszormeny str. 138, 4032, Hungary

Abstract

Transition metal oxide NPs have delivered wide applications in various fields. Therefore, in this study, a novel fungus, Alternaria sp. (NCBI Accession No: MT982648) was isolated and characterized from the vicinity of medicinal plants. Eventually, in this method extracted proteins from isolated fungus were utilized to synthesize highly biocompatible zinc nanoparticles (ZnO NPs). The various physical techniques including UV-visible spectroscopy, TEM, HR-TEM, XRD, DLS, zeta potential, and FTIR were used to characterize particles. The UV-visible absorption (λMax) and binding energy for the as-synthesized particles were found to be 329 nm and 3.91 eV, respectively. Further, the polydispersed particles were revealed to have regular crystallinity with hexagonal wurtzite phase of ZnO with the spacing of ~2.46 Å under XRD and HR-TEM. The average size of a particle under TEM was found to be ~18 nm. The evaluation of various surface functional groups of particles was done by FTIR. The average hydrodynamic diameter of particles was found to be ~57 d. nm with 0.44 particle distribution index whereas the nanoemulsion stability was explained by Zeta potential (−9.47 mV). These particles were found to exhibit potential antibacterial and anticancer activities. They were found to be bactericidal against S. abony (MIC 5.73 μg/mL); B. pumilis (MIC 6.64 μg/mL); K. pneumonia (MIC 14.4 μg/mL); E. coli (MIC 8.7 μg/mL); B. subtilis (MIC 5.63 μg/mL) and S. aureus (MIC 12.04 μg/mL). Further, they are also found to be concentration-dependent anticancer and inhibited the growth of A549 cells (IC50-65.3 μg/mL) whereas they were found to demonstrate no any cytotoxicity against NRK normal kidney cell line. The internalization of particles into the nucleus (i.e., nuclear fragmentation and DNA damage) was confirmed by DAPI staining. The intracellular particles were found to generate excessive ROS. Further, the anticancer potential was also estimated by noticing a hike in oxidative stress parameters, cell viability, cell morphology, and change in mitochondrial membrane potential. We effectively synthesized potentially potent antibacterial and anticancer novel bioengineered ZnO NPs.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3