Rapid and Label-Free Prenatal Detection of Down’s Syndrome Using Body Fluid Surface Enhanced Raman Spectroscopy

Author:

Wu Qiong1,Zheng Lin2,Huang Hailong2,Lin Huijing1,Lin Xueliang1,Xu Liangpu2,Chen Rong1,Lin Duo1,Chen Guannan1

Affiliation:

1. Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China

2. Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou 350001, Fujian, China

Abstract

Down’s syndrome (DS) is the leading genetic cause of intellectual disability. In this work, the surface enhanced Raman spectroscopy (SERS) was used for the detection of amniotic fluid and plasma from pregnant women with DS fetus for the first time. High-quality and characteristic spectral features of amniotic fluid and plasma samples from DS groups can be obtained in comparison to normal group. Moreover, principal component analysis with linear discriminant analysis was applied to generate the efficient diagnostic model, achieving accuracies of 94.3% and 88.5% for the DS detection with amniotic fluid and plasma samples, respectively. This preliminary study would provide a novel, convenient and accurate prenatal test based on blood SERS technology for clinical DS screening.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3