Assessing the Efficacy of a Tumor Nanovaccine and Artificial Antigen Presenting Cell-Based System as a Combination Therapy in a Mouse Model of Melanoma

Author:

Song Shilong1,Xu Hongbo1,Yang Yan1,Wan Qiangkun1,He Bin1,Cai Feng1,Yin Hongmei1,Zhou Yongchun1,Jin Xiaoxiao2,He Zelai1

Affiliation:

1. Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China

2. Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing 210009, Jiangsu Province, China

Abstract

Tumor cell lysate (TCL)-based vaccines contain a large number of tumor-specific and related antigens, albeit at low levels, that require active transfer and presentation by antigen-presenting cells (APCs) in vivo, which stimulate a weak immune response. The artificial APC (aAPC) system presented herein is a cell-based therapeutic system that can significantly enhance the immune response compared to TCL-based vaccines. This study combines these two treatment strategies to assess their in vitro and in vivo effects. We successfully prepared TCL-poly(lactic-co-glycolic acid)-PEI (TPP) and demonstrated that it was phagocytosed by the APCs and enhanced the maturation of DCs in vitro. The use of TPP in combination with the aAPCs resulted in better antitumor effects compared to the individual therapies. The combination therapy induced a higher proportion of CD4+ T, CD8+ T, and TRP2180–188-specific CD8+ T cells in comparison with the individual therapies. Additionally, the combination therapy enhanced the in vitro proliferation activity; greater inhibited regulatory T cells; and promoted inflammatory cytokine secretion, while reduced the production of inhibitory cytokines. In conclusion, the combination therapy consisting of the TPP tumor nanovaccine and the aAPC system enabled a broader immune response and achieve better antitumor effects compared to treatment with the individual therapies.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3