Plasmon-Enhanced Photodynamic Therapy for Gastric Cancer by Integrating Targeted Gold Nanorods and Photosensitizer

Author:

Xin Jing1,Fu Lei1,Wang Sijia1,Wang Jing1,Zhang Zhenxi1,Yao Cuiping1

Affiliation:

1. Xi’an Jiaotong University, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China

Abstract

Gold nanoparticles are widely used for biomedical purposes because of their unique optical, surface plasmon resonance properties, ease of surface functionalization, and high load capacity. Gold nanorods (AuNR), which are rod-shaped gold nanoparticles, have been used as an effective photodynamic treatment (PDT) carrier to boost singlet oxygen (SOG) generation through localized surface plasmon resonance (LSPR) effect and then improve PDT efficacy. However, the suitable spatial location should be established to enable photosensitizer to feel the LSPR enhancement. In this study, we utilized multifunctional PEG chain to adjust efficient distance to induce more photosensitizers to feel the enhanced LSPR effect of AuNR and used a novel gastric tumor angiogenesis marker to prevent the uncontrolled LSPR shift induced by the aggregation of AuNR, and then acquire plasmon-enhanced PDT. The synthesized nano-system of integrated photosensitizer and targeted AuNR could significantly enhance SOG generation and improve the apoptosis-inducing ability through activation of the mitochondria-mediated apoptotic pathway, and -shorten the induction time for apoptosis, thus acquire efficient plasmon-enhanced PDT. Comparing to the normal photosensitizer, half of the targeted photosensitizer produce same antitumor effect, which improves maximum tolerable dose. Generally, this novel targeted delivery system is a promising agent of plasmon-enhanced PDT for gastric cancer.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3