Effect of Propofol Nanoemulsion on Brain Perilymph Metabolism Through Transforming Growth Factor β1/Extracellular Signal Regulated Kinase 5 (TGF-β1/ERK5) Signaling Pathway

Author:

Huang Qinfeng1,Li Jiaqi1,Liao Ye1,Wei LiQin2,Chen Hui1

Affiliation:

1. Department of Anesthesiology, First Affiliated Hospital, Fujian Medical University (Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical), Fuzhou 350000, Fujian Province, China

2. Department of Anesthesiology, Union Hospital, Fujian Medical University, Fuzhou 350000, Fujian Province, China

Abstract

Propofol takes part in the metabolism of perilymph in the brain. Propofol nanoemulsion can enhance the efficacy of drugs. This study explored how propofol modified by nanoemulsion inhibited the TGF-β1/ERK5 signaling pathway, thus affecting the brain. The role of perilymph metabolism, and its mechanism of action were also clarified. 40 SD rats of clean grade were separated into 4 groups, namely; control group, propofol, propofol nanoemulsion and TGF-β1/ERK5 inhibitor group. We observed the particle size and potential of propofol nanoemulsion, concentration of several groups of immune factors, inflammatory factors, TGF-β1, and ERK5 protein expression. Results from the laser particle size analyzer showed that the average particle size for the propofol nanoemulsion was 87.14 nm. The zeta potential was 0.391 mV, which was close to electrical neutrality. ELISA results showed that the concentrations of IgG, IgA, and lgM in the propofol group, propofol nanoemulsion group, and TGF-β1/ERK5 inhibitor group were evidently lower and the IgG, IgA, IgM concentration for the propofol nanoemulsion group. Moreover, the concentration was lower than that of other groups. ELISA test results showed that the concentrations of IL-12, IL-10, TNF-α, and IL-2 in the propofol group, propofol nanoemulsion group, and TGF-β1/ERK5 inhibitor group were obviously lower. The concentrations of IL-12, IL-10, TNF-α and IL-2 in the propofol nanoemulsion group were lower than those in the other groups (p < 0.05). These results exhibited that, the expression levels of TGF-β1 and ERK5 in the propofol group, propofol nanoemulsion group, and TGF-β1/ERK5 inhibitor group were evidently lower. TGF-β1 and ERK5 expression levels in the propofol nanoemulsion group was lower than in the other groups (p<0.05). Propofol nanoemulsion regulates the TGF-β1/ERK5 signaling pathway, inhibits its expression, reducing inflammation, increasing immune response, and promoting perilymph metabolism in the brain.

Publisher

American Scientific Publishers

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3