Preparation and Biocompatibility Evaluation of Nanoscale Isoniazide-Loaded Mineralized Collagen Implants for Tuberculous Bone and Joint Repair

Author:

Fang Xu1,Dong Jun-Feng1,Wang Qian1,Feng Aihua2,Krishnan Sasirekha3,Shoma Suresh K.3,Ramalingam Murugan4

Affiliation:

1. The Spinal Surgery Department, The First College of Clinical Medical Science (Yichang Central People’s Hospital), China Three Gorges University, HuBei, 443003, China

2. The First College of Clinical Medical Science (Yichang Central People’s Hospital), China Three Gorges University, HuBei, 443003, China

3. Centre for Biomaterials, Cellular, and Molecular Theranostics, Vellore Institute of Technology, Vellore, 632014, India

4. School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China

Abstract

Bone and joint tuberculosis is an extremely severe infectious disease that commonly occurs due to the primary infection of a type of mycobacteria, called Mycobacterium tuberculosis. Under the current scenario, there are very limited supplies of bone grafts available for the treatment of deceased bone, including autogenous bone and synthetic biomaterials. The present study aimed to construct a nanoscale isoniazid-loaded mineralized collagen implant, and then to explore its physicochemical properties and to investigate its biocompatibility suitable for bone and joint repair. Using type I collagen as raw material and the principle of biomimetic mineralization for self-assembly of bone tissue, a new drug-loaded mineralized collagen implant was constructed by molecular coprecipitation with isoniazid. Its surface morphology, elemental composition, and porosity were characterized by field emission scanning electron microscope (SEM), X-ray diffraction (XRD), and pycnometer. The performance of the implant was gauged by sustained release and degradation, which were studied using an ultraviolet spectrophotometer and a simulated in vivo environment. The drug loading and encapsulation rates of the implants were (6.25 ± 0.48)% and (54 ± 2.34)%, respectively. The in vitro release time of the scaffold was more than 12 weeks and the degradation performance was excellent. The scaffold was then implanted into mice, and the inflammatory reaction of local tissue was observed by Haemotoxylin and Eosin (H&E) and Masson. The in vivo evaluation in mice showed that the scaffold was biocompatible. Overall, compared with traditional drug loading systems, the isoniazid biomimetic mineralized collagen implant constructed here has better drug release performance, biodegradability, and biocompatibility. This kind of collagen implant may find potential applications in tuberculous bone and joint repair.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3