CFD-Aerosol Modeling of the Effects of Wall Composition and Inlet Conditions on Carbon Nanotube Catalyst Particle Activity

Author:

Brown David P.,Nasibulin Albert G.,Kauppinen Esko I.

Abstract

The evolution of iron catalyst particles during aerosol (floating catalyst) Chemical Vapor Deposition (CVD) synthesis of Carbon Nanotubes (CNTs) from CO is computed using a multi species Computational Fluid Dynamics (CFD) model incorporating a lognormal aerosol method of moments (MOM) to describe their dynamics and a combined chemical kinetics and equilibrium model for catalytic production of CO2. The influence of the presence of iron at the reactor walls, the fed particle size, number concentration and polydispersity and the effect of the catalytic production of CO2 at the reactor wall are studied in terms of particle size, concentration and polydispersity and reagent concentration during CNT synthesis. It is found that iron catalyst particle dynamics are essentially insensitive to wall iron concentrations and, for a wide range of particle sizes and concentrations, it is found that the catalyst particles are stable up to a critical CNT window in which CNT nucleation and growth occurs. Concentrations of catalyst particles significantly above 1 × 1014 #/m3, however, lead to poor control over catalyst particle size and polydispersity at the CNT nucleation front which, in turn, leads to poor control over CNT diameter. The location of the growth window is shown to be directly associated with the availability of catalytically produced CO2 diffusing from the reactor walls to the reactor core. These results help to explain the large variations in CNT diameter and chirality and the inefficient use of catalyst material in other floating catalyst CNT processes based on in-situ catalyst particle synthesis.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3