Design and Analysis of Dual Monopole Antennas for Long-Term Evolution and Ultra-Wideband Applications: Narrow and Wide Band Variants

Author:

Ramya 1,Alharbi Fares2,Kumar Naresh3

Affiliation:

1. Assistant Professor, Department of ECE, Sri Krishna College of Technology, Coimbatore 641042, India

2. Department of Computer Science, College of Computing and IT, Shaqra University, Shaqra, 15526, Saudi Arabia

3. Computer Science, DMPS, College of Arts and Sciences, University of Nizwa Sultanate of Oman, Nizwa, Sultanate of Oman, Post Code: 616, Oman

Abstract

Wireless communication systems continue to evolve, with LTE and UWB technologies at the forefront of this advancement. LTE (Long-Term Evolution) networks demand efficient antennas to support high-speed data transmission, while UWB (Ultra-Wideband) systems require antennas capable of operating across a broad spectrum. Monopole antennas have emerged as promising candidates for meeting these demands due to their compact size and versatility. In this study, we delve into the design and analysis of dual monopole antennas, tailored to cater to both LTE and UWB applications, with variants optimized for narrow and wide bands. The methodology adopted in this study involves a systematic approach to antenna design and analysis. Initially, the design parameters are carefully chosen to meet the frequency requirements of LTE and UWB systems, considering both narrow and wide band variants. Advanced simulation tools are employed to optimize the antenna geometry and ensure impedance matching across the desired frequency bands. Additionally, rigorous electromagnetic analysis techniques are utilized to evaluate radiation characteristics, including antenna gain, directivity, and radiation efficiency. Through iterative refinement and optimization, the performance of the dual monopole antennas is systematically enhanced to meet the stringent requirements of LTE and UWB applications. The results of our study demonstrate the efficacy of the proposed dual monopole antennas for LTE and UWB applications. The good agreement is observed in the measured and simulated return loss with a narrow bandwidth of 0.45 GHz (1.65 to 2.10 GHz) for LTE band and a wide bandwidth of 12.42 GHz (4.74 to 17.16 GHz) for UWB applications.

Publisher

American Scientific Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3