Improving Anti-Inflammatory Effect of Luteolin with Nano-Micelles in the Bacteria-Induced Lung Infection

Author:

Miao Junming1,Lin Feng2,Huang Ning1,Teng Yan3

Affiliation:

1. Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, 610041, PR China

2. Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, PR China

3. Institute of Neurology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, PR China

Abstract

The effective therapy for lung infectious diseases became more and more difficult since the severe antibiotic resistance of pathogenic microorganisms, it is urgent to develop new antimicrobial agents. Luteolin has been reported to play a crucial part in host immune responses. However, the clinical use of luteolin is impeded due to its hydrophobicity and low oral bioavailability. In this study, we formulated luteolin-loaded Methoxy poly(ethylene glycol)-poly(lactide) micelles (luteolin/MPEG-PLA), to improve the bioavailability of luteolin in lung infectious diseases. The results showed that luteolin/MPEG-PLA treatment could reduce the adhesion of Klebsiella pneumoniae (K. pneumoniae) to lung epithelial cells and enhance the germicidal ability of macrophages against K. pneumoniae compared to untreated group. Meanwhile, luteolin/MPEG-PLA showed stronger adhesion resistance of epithelial cells and germicidal ability of macrophages compared with free luteolin. In vivo study, luteolin/MPEG-PLA administration significantly promoted the clearance of bacteria and reduced inflammatory infiltration of lung tissue in K. pneumoniae induced lung infectious mice model. Further studies showed that treatment with luteolin/MPEG-PLA reduced the mRNA expression of LPS-induced inflammatory cytokines and chemokines in macrophages significantly. In general, luteolin/MPEG-PLA can enhance the anti-bacterial ability of lung epithelial cells and macrophages, and has a stronger therapeutic effect than free luteolin in bacterial-induced lung infection. Luteolin/MPEG-PLA may be an excellent potential drug for bacterial-induced lung infectious diseases treatment.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3