Superoxide-Driven Aconitase FE-S Center Cycling

Author:

Gardner Paul R.1

Affiliation:

1. Division of Critical Care, R040, The Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA.

Abstract

O−2 produced by the autoxidation of respiratory chain electron carriers, and other cellular reductants, inactivates bacterial and mammalian iron-sulfur-containing (de)hydratases including the citric acid cycle enzyme aconitase. Release of the solvent-exposed iron atom and oxidation of the [4Fe-4S]2+ cluster accompanies loss of catalytic activity. Rapid reactivation is achieved by iron-sulfur cluster reduction and Fe2+ insertion. Inactivation-reactivation is a dynamic and cyclical process which modulates aconitase and (de)hydratase activities in Escherichia coli and mammalian cells. The balance of inactive and active aconitase provides a sensitive measure of the changes in steady-statO−2 levels occuring in living cells and mitochondria under stress conditions. Aconitases are also inactivated by other oxidants including O2, H2O2, NO., and ONOO− which are associated with inflammation, hyperoxia and other pathophysiological conditions. Loss of aconitase activity during oxidant stress may impair energy production, and the liberation of reactive iron may further enhance oxidative damage. Iron-sulfur center cycling may also serve adaptive functions by modulating gene expression or by signaling metabolic quiescence.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 156 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3