Crash Injury Analysis of Knee Joint Considering Pedestrian Safety

Author:

Asgari M,Keyvanian Sh S

Abstract

Background: Lower extremity injuries are frequently observed in car-to-pedestrian accidents and due to the bumper height of most cars, knee joint is one of the most damaged body parts in car-to-pedestrian collisions.Objective: The aim of this paper is first to provide an accurate Finite Element model of the knee joint and second to investigate lower limb impact biomechanics in car-to-pedestrian accidents and to predict the effect of parameters such as collision speed and height due to the car speed and bumper height on knee joint injuries, especially in soft tissues such as ligaments, cartilages and menisci.Methods: A 3D finite element (FE) model of human body knee joint is developed based on human anatomy. The model consists of femur, tibia, menisci, articular cartilages and ligaments. Material properties of bones and soft tissues were assumed to be elastic, homogenous and isotropic.Results: FE model is used to perform injury reconstructions and predict the damages by using physical parameters such as Von-Mises stress and equivalent elastic strain of tissues.Conclusion: The results of simulations first show that the most vulnerable part of the knee is MCL ligament and second the effect of speed and height of the impact on knee joint. In the critical member, MCL, the damage increased in higher speeds but as an exception, smaller damages took place in menisci due to the increased distance of two bones in the higher speed.

Publisher

Salvia Medical Sciences Ltd

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of walking on knee ligament response in car-to-pedestrian collisions;Frontiers in Bioengineering and Biotechnology;2023-04-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3