Evaluating the Moisture Susceptibility of Asphalt Mixtures Containing RCA and Modified by Waste Alumina

Author:

Ugla Sarah Khalid,Ismael Mohammed Qadir

Abstract

The management of building and demolition waste is an important subject in the government's sustainability efforts. Today, recycling and reusing industrial waste and by-products is a topic of considerable relevance in every industry, but it is especially important in cement and concrete technology. Within the asphalt pavement sector, the necessity for environmentally friendly highway design and construction is at the top of the priority list. Nevertheless, due to the inferior behavior of the resulting recycled concrete aggregate (RCA) mixes, additional enhancement materials are needed. In this study, the effect of using alumina waste in the form of secondary aluminum dross (SAD) in the asphalt compacted specimens that contained RCA as coarse aggregate was discussed. The conventional limestone dust filler is replaced by SAD at rates of 10, 20, and 30% by filler weight in the control mix, and then the best percentage is used in mixtures containing RCA at rates of 25, 50, 75, and 100%. The experimental work includes volumetric properties by employing the Marshall design method, indirect tensile strength (ITS), and compressive strength. All the used percent of SAD enhanced the properties of the asphalt mixture; the tensile strength ratio (TSR) of the control mixture increased by 4.58%, 8.52%, and 7.64% for SAD rates (10, 20, and 30%), respectively. The best dosage of SAD was added to the mixture containing RCA at different specified rates. The maximum TSR (13.92%) was obtained at 25% RCA. The same steps were followed in the compressive strength test; adding SAD increased the index of retained strength (IRS) of the control mixture by 55.11, 13.42, and 9.13% for 10, 20, and 30%, respectively. Thereafter, the best dosage of 20% SAD was added to the hot mix asphalt (HMA) containing different RCA percents. The maximum IRS (17.43%) was also obtained at a 25% RCA. Doi: 10.28991/CEJ-SP2023-09-019 Full Text: PDF

Publisher

Ital Publication

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3