A Comparative Study of Metakaolin/Slag-Based Geopolymer Mortars Incorporating Natural and Recycled Sands

Author:

Benalia Saliha,Zeghichi Leila,Benghazi Zied

Abstract

Great efforts are being made to minimize the negative impact of the Portland cement industry on the environment by using industrial by-products during the manufacture of clinker or by the partial replacement of cement during the preparation of concrete. However, the carbon footprint remains relatively high in addition to the large consumption of natural resources such as sand and other aggregates. A solution to these problems is to completely replace Portland cement with a new generation of mineral binders, commonly known as geopolymers, which have properties similar to those of Portland cement. These binders can be obtained by the alkali-activation of siliceous or aluminosilicate materials. This study aims to develop pozzolanic type binders at room temperature (20°C) from the alkali-activation of aluminosilicate materials based on metakaolin and blast furnace slag at different percentages. Different activators were employed, including solid (NaOH) and liquid (Na2SiO3.nH2O). The optimal mixtures were used for making mortars based on natural sand (NS) and concrete recycled sand (CRS). A comparative experimental study of the physical, mechanical, and microstructural characteristics of the two types of mortars was conducted. Cement mixtures with a high amount of slag and an association of sodium hydroxide and sodium silicate gave the best physico-mechanical properties. A drop in the compressive strength of mortars prepared with CRS was observed after 365 days, but it was still higher than those with NS. The obtained results show the possibility of designing an eco-friendly CRS-based geopolymer mortar that is more resistant than NS-based mortar with a homogeneous and integrated microstructure. Doi: 10.28991/CEJ-2022-08-08-07 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3