Complex Linkage between Watershed Attributes and Surface Water Quality: Gaining Insight via Path Analysis

Author:

Khan Afed UllahORCID,Rahman Hafiz Ur,Ali Liaqat,Khan Muhammad Ijaz,Khan Humayun Mehmood,Khan Afnan Ullah,Khan Fayaz Ahmad,Khan Jehanzeb,Shah Liaqat Ali,Haleem Kashif,Abbas Asim,Ahmad Izaz

Abstract

Understanding the influence of various variables on surface water quality is extremely important for protecting ecosystem health. The principal aim of this study is to assess the direct (DE), indirect (IE) and total effects (TE) of socio-economic, terrestrial and hydrological factors on surface water quality via path analysis through the lens of 15 sub-basins located on Indus basin, Pakistan. Four path models were selected based on Comparative Fit Index (CFI) = 0.999 value. First path model showed that rangelands having low population density decline river runoff which decreases instream Electrical Conductivity (EC) because of lower anthropogenic activities. Second path model depicted that croplands having higher population density enhance river runoff due to irrigation tail water discharge which decline instream EC because of dilution. Third path model showed that croplands with higher population density enhance river runoff which increases instream NO3 concentration because of unscientific application of irrigation water. Fourth path model unveiled that croplands enhance Gross Domestic Product (GDP) which enhance river runoff and instream NO3 concentration. To protect ecosystem health, Best Management Practices (BMPs), precision farming and modern irrigation techniques should be adopted to reduce irrigation tail water discharges containing pollutants entry in Indus River. Doi: 10.28991/cej-2021-03091683 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3