Magnetic Contactless Crank-rocker Machine

Author:

Ishtay Adnan,Al-Dabbas Mohammad Awwad

Abstract

Objective: In this paper, a proposed technique of motion transmission is introduced, which is based on the crank-rocker principle of motion. The energy transmission action is performed through magnetic force, in which no direct connection is made between the energy source input and the energy load output. Also, to illustrate the concept of motion and to approve the continuity of energy transmission using this proposed technique, a simple model of this mechanism has been built and run, showing the basic sequence of operation. Methodology/analysis: In this mechanical transmission mechanism, one side is rotating and the other side is vibrating, in which any side is energy input (which is usually the vibrating rocker), and the other side is energy output (which is the rotating crank). That seems similar to the classical crank-rocker machine in the four-bar mechanism, but without direct mechanical contact between the input and output energy stream. The concept of motion and mathematical analysis with structuring conditions is provided in this paper, where the dynamic analysis of the system is left for future work. A pilot physical prototype is manufactured and experimentally tested, validating the proposed design. Findings: The structural parameters of this proposed contactless crank-rocker machine have been modelled and simulated using the MATLAB program. It shows that these parameters could be selected and optimized to guarantee the minimum conditions for continued energy transmission. Based on these parameters, a simple model has been built and operated, which illustrates the concept of motion and validates the finding of MATLAB simulation. Novelty/improvement:Contactless crank-rocker motion is a very promising technique. It is possible to apply it in many applications, like the energy harvesting area, and it could be employed certainly in specific designs, such as MEMS, where no other motion transmission types can be used. Doi: 10.28991/ESJ-2022-06-02-07 Full Text: PDF

Publisher

Ital Publication

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3