Possible Physiological Mechanisms of Leaf Photodamage in Plants Grown under Continuous Lighting

Author:

Shibaeva T. G.1,Mamaev A. V.1,Titov A. F.1

Affiliation:

1. Institute of Biology, Karelian Research Center, Russian Academy of Sciences

Abstract

Unlike the natural photoperiod that includes the alternation of day and night in the diurnal cycle, continuous (24 h a day) lighting provides uninterrupted supply of light energy required for photosynthesis, permanently promotes photooxidative processes, implies continuous signaling to the photoreceptors, and desynchronizes the internal circadian biorhythms from the external light/dark cycle (circadian asynchrony). The leaves of many plant species grown under constinuous lighting are prone to characteristic and potentially lethal interveinal chlorosis and necrosis. The photodamage of plant leaves exposed to long photoperiods, including daily 24-h illumination was described more than 90 years ago, but the causes of this phenomenon are still not entirely clear. Biological bases underlying this phenomenon are theoretically and practically important, because growing plants under a 24-h photoperiod at a relatively low photon flux density is seemingly an effective way to save resources and increase plant productivity in greenhouses and plant factories with artificial lighting. This review of available literature compiles and evaluates the arguments both supporting and confronting the hypothesis that carbohydrate accumulation, specifically the hyperaccumulation of starch in leaves, is the main cause of photodamage to plants grown under continuous lighting or long photoperiods. The analysis of a large number of studies indicates that the accumulation of carbohydrates is neither the main nor the only cause of leaf injuries in plants grown under a 24-h photoperiod, although the role of this factor in photodamage cannot be ruled out. The appearance and development of photodamage under a 24-h photoperiod is presumably due to several simultaneously acting factors, such as photooxidation, stress-induced senescence, and circadian asynchrony. The contribution of individual factors to photodamage may vary substantially depending on environmental conditions and biological properties of the object (plant species and variety, plant age, and the stage of development).

Publisher

The Russian Academy of Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3