Modeling of Dynamic Thermo-Elastic-Viscous-Plastic Deformation of Flexible Shallow Reinforced Shells

Author:

Yankovskii A. P.1

Affiliation:

1. Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Abstract

A mathematical model of non-isothermal elastic-viscous-plastic deformation of flexible shallow shells with multidirectional reinforcement structures has been developed. Wave processes and weak resistance to transverse shear in curved panels are modeled in terms of Ambartsumian’s bending theory. The geometric nonlinearity of the problem is taken into account in the Karman approximation. The composition components are assumed to be isotropic materials, and their plasticity is described by the flow theory with a loading function depending on the strain rate and temperature. The connectedness of the thermomechanical problem under dynamic loading of composite shallow shells is taken into account. In the transverse direction of constructions, the temperature is approximated by a 7th order polynomial. The formulated two-dimensional nonlinear initial-boundary value problem is solved using an explicit numerical scheme of time steps. The thermo-elastic-visco-plastic and thermo-elastic-plastic behavior of fiberglass and metal-composite shallow shells orthogonally reinforced in two tangential directions, loaded in the transverse direction by an air blast wave, has been studied. It is shown that flexible curved fiberglass panels at certain points can additionally heat up by 14…27°C, and similar metal-composite conctructions – by 70°С or more. In this case, peak temperature values are kept at short-term intervals – on the order of fractions of 1 ms. It is shown that, unlike flexible plates, similar shallow shells (with the same reinforcement structure and the same characteristic dimensions) under dynamic loading in the transverse direction must be calculated not only taking into account the dependence of the plastic properties of the composition components on their strain rate, but also taking into account thermal response in such thin-walled constructions. A more intense inelastic deformation of curved composite panels is observed when they are loaded from the side of the convex front surface.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3