RuFlux: The Network of the Eddy Covariance Sites in Russia

Author:

Kuricheva O. A.1,Avilov V. K.1,Varlagin A. V.1,Gitarskiy M. L.2,Dmitrichenko A. A.3,Dyukarev E. A.34,Zagirova S. V.5,Zamolodchikov D. G.67,Zyryanov V. I.8,Karelin D. V.9,Karsanaev S. V.10,Kurganova I. N.11,Lapshina E. D.3,Maksimov A. P.10,Maximov T. Ch.10,Mamkin V. V.17,Marunich A. S.12,Miglovets M. N.5,Mikhailov O. A.5,Panov A. V.8,Prokushkin A. S.8,Sidenko N. V.8,Shilkin A. V.613,Kurbatova Yu. A.1

Affiliation:

1. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

2. Russian Energy Agency under the Ministry of Energy of the Russian Federation

3. Yugra University

4. Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences

5. Institute of Biology of the Komi Science Centre of the Ural Branch of the Russian Academy of Sciences

6. Center for Forest Ecology and Productivity of the Russian Academy of Sciences

7. National Research University Higher School of Economics,

8. Sukachev Institute of Forest of the Siberian Branch of the Russian Academy of Sciences – a separate subdivision of the Federal Research Centre of the Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences (FRC KSC SB RAS)

9. Institute of Geography of the Russian Academy of Sciences

10. Institute for Biological Problems of Cryolithozone of the Siberian Branch of the Russian Academy of Sciences – a separate subdivision FSBIS Federal Research Centre “Yakut Scientific Centre of the Siberian Branch of the Russian Academy of Sciences”

11. Institute of Phisicochemical and Biological Problems in Soil Science, RAS

12. Valday Branch of State Hydrological Institute

13. Scientific and Production Association “Typhoon”

Abstract

For the first time, the information is summarized on the history of establishment, the state of observations and the main scientific results on sites included in RuFlux, the Russian eddy covariance network for the monitoring of greenhouse gases (GHG). Eddy covariance technique provides estimates of GHG fluxes at the level of ecosystems. The long-term series of GHG fluxes (more than 190 site-years of observations) have been obtained. Up to the end of 2022, 86% of the sites of the RuFlux network are located in forests and wetlands, 77% of all sites are in the middle and southern taiga. Almost all undisturbed ecosystems in Russia are the sinks of CO2 from the atmosphere with a range of average annual estimates of net absorption from 80 to 240 g C m–2 yr–1. The GHG balance is determined by a complex of abiotic and biotic factors. The average long-term net CO2 absorption is higher in permafrost Siberian larch forests than in European spruce forests. When moving from west to east, the intensity of CO2 sink in the middle of summer increases, and the emission of CO2 in the middle of winter decreases sharply. Natural and anthropogenic disturbances lead to the transformation of the carbon balance by increasing the release of CO2 into the atmosphere. RuFlux network covers a wide range of types of ecosystems, but it is needed to organize more GHG sites in tundra, northern taiga, forest-steppe, steppe, and semi-deserts; in the ecosystems disturbed by humans (including fields) and in the ecosystems with successions caused by natural disturbances.

Publisher

The Russian Academy of Sciences

Reference19 articles.

1. Бурба Г.Г., Курбатова Ю.А., Куричева О.А., Авилов В.К., Мамкин В.В. Метод турбулентных пульсаций. Краткое практическое руководство. М.: ИПЭЭ им. А.Н. Северцова РАН, 2016. 223 с.

2. Карелин Д.В., Замолодчиков Д.Г., Шилкин А.В., Куманяев А.С., Попов С.Ю., Тельнова Н.О., Гитарский М.Л. Влияние прогрессирующего распада древостоя на углеродный обмен еловых лесов // ДАН. Сер. наук о Земле. 2020. Т. 493. № 1. С. 89–93.

3. Чебакова Н.М., Выгодская Н.Н., Арнет А., БелеллиМаркезини Л., Курбатова Ю.А., Парфенова Е.И., Валентини Р., Верховец С.В., Ваганов Е.А., Шульце Е.Д. Энерго- и массообмен и продуктивность основных экосистем Сибири (по результатам измерений методом турбулентных пульсаций) 2. Углеродный обмен и продуктивность // Изв. РАН. Сер. биол. 2014. № 1. С. 65–75.

4. Alekseychik P., Mammarella I., Karpov D., Dengel S., Terentieva I., Sabrekov A., Glagolev M., Lapshina E. Net ecosystem exchange and energy fluxes measured with eddy covariance technique in a West Siberian bog // Atmospheric Chem. and Phys. 2017. Vol. 17. P. 9333–9345. https://doi.org/10.5194/acp-2017-43

5. Baldocchi D.D. How eddy covariance flux measurements have contributed to our understanding of Global Change Biology // Global Change Biology. 2020. Vol. 26. № 1. P. 242–260.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3