Searching for Laurent Solutions of Systems of Linear Differential Equations with Truncated Power Series in the Role of Coefficients

Author:

Abramov S. A.1,Ryabenko A. A.1,Khmelnov D. E.1

Affiliation:

1. Federal Research Center “Computer Science and Control,” Russian Academy of Scienc

Abstract

Systems of linear ordinary differential equations with the coefficients in the form of infinite formal power series are considered. The series are represented in a truncated form, with the truncation degree being different for different coefficients. Induced recurrent systems and literal designations for unspecified coefficients of the series are used as a tool for studying such systems. An algorithm for constructing Laurent solutions of the system is proposed for the case where the determinant of the leading matrix of the induced system is not zero and does not contain literals. The series included in the solutions are still truncated. The algorithm finds the maximum possible number of terms of the series that are invariant with respect to any prolongations of the truncated coefficients of the original system. The implementation of the algorithm as a Maple procedure and examples of its usage are presented.

Publisher

The Russian Academy of Sciences

Reference15 articles.

1. Abramov S.A., Barkatou M.A., Khmelnov D.E. On full rank differential systems with power series coefficients // J. of Symbolic Computation. 2015. V. 68. P. 120–137.

2. Абрамов С.А., Хмельнов Д.Е. Регулярные решения линейных дифференциальных систем с коэффициентами в виде степенных рядов // Программирование. 2014. № 2. С. 75–85.

3. Рябенко А.А. Экспоненциально-логарифмические решения линейных дифференциальных систем с коэффициентами в виде степенных рядов // Программирование. 2015. № 2. С. 54–62.

4. Абрамов С.А., Рябенко А.А., Хмельнов Д.Е. Линейные обыкновенные дифференциальные уравнения и усеченные ряды // Ж. выч. мат. и мат. физ. 2019. Т. 59. № 10. С. 66–77.

5. Абрамов С.А., Рябенко А.А., Хмельнов Д.Е. Регулярные решения линейных обыкновенных дифференциальных уравнений и усеченные ряды // Ж. выч. мат. и мат. физ. 2020. Т. 60. № 1. С. 4–17.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3