Three-Dimensional Numerical Modeling of Lava Dynamics Using the Smoothed Particle Hydrodynamics Method

Author:

Starodubtsev I. S.12,Starodubtseva Y. V.1,Tsepelev I. А.1,Ismail-Zadeh A. T.3

Affiliation:

1. Krasovsky Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences

2. Ural Federal University

3. Karlsruhe Institute of Technology, Institute of Applied Geosciences

Abstract

Lava domes and lava flows are major manifestations of effusive volcanic eruptions. Less viscous lava tends to flow long distances, depending on the volcanic slope topography, the eruption rate, and the viscosity of the erupted magma. When magma is highly viscous, its eruption to the surface leads to the formation of lava domes and their growth. The meshless smoothed particle hydrodynamics (SPH) method is used in this paper to simulate lava dynamics. We describe the SPH method and present a numerical algorithm to compute lava dynamics models. The numerical method is verified by solving a model of cylindrical dam-break fluid flow, and the modelled results are compared to the analytical solution of the axisymmetric thin-layer viscous current problem. The SPH method is applied to study three models of lava advancement along the volcanic slope, when the lava viscosity is constant, depends on time and on the volume fraction of crystals in the lava. Simulation results show characteristic features of lava flows, such as lava channel and tube formation, and lava domes, such as the formation of a highly viscous carapace versus a less viscous dome core. Finally, the simulation results and their dependence on a particle size in the SPH method are discussed.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3