Membrane-Active Mitochondria-Targeted Antitumor Agents and Drug Delivery Systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Mitochondria are “power stations” of cells. Without them the normal functioning of a living cell is impossible. This organelle is an attractive target for antitumor therapy because of the variety of processes in which mitochondria are involved and the differences between mitochondria in healthy and tumor cells. In this review, various approaches to the development of diagnostic and therapeutic agents selectively directed to the mitochondria of tumor cells are described. The main mitochondrial vector ligands, their conjugation with known antitumor drugs, as well as their combination with common drug delivery systems are described.

About the authors

A. P. Sadikov

MIREA – Russian Technology University (Lomonosov Institute of Fine Chemical Technology)

Email: c-221@yandex.ru
Russia, 119571, Moscow

Z. G. Denieva

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: c-221@yandex.ru
Russia, 119071, Moscow

U. A. Budanova

MIREA – Russian Technology University (Lomonosov Institute of Fine Chemical Technology)

Author for correspondence.
Email: c-221@yandex.ru
Russia, 119571, Moscow

Yu. L. Sebyakin

MIREA – Russian Technology University (Lomonosov Institute of Fine Chemical Technology)

Email: c-221@yandex.ru
Russia, 119571, Moscow

References

  1. Reichert A.S., Neupert W. 2004. Mitochondriomics or what makes us breathe. Trends in genetics. 20 (11), 555–562. https://doi.org/10.1016/j.tig.2004.08.012
  2. Cho H., Cho Y.Y., Shim M.S., Lee J.Y., Lee H.S., Kang H.C. 2020. Mitochondria-targeted drug delivery in cancers. Biochim. Biophys. Acta Mol. Basis Dis. 1866 (8), 165808. https://doi.org/10.1016/j.bbadis.2020.165808
  3. Buchke S., Sharma M., Bora A., Relekar M., Bhanu P., Kumar J. 2022. Mitochondria-targeted, nanoparticle-based drug-delivery systems: Therapeutics for mitochondrial disorders. Life (Basel). 12 (5), 657. https://doi.org/10.3390/life12050657
  4. Nelson D.L., Cox M.M. 2021. Lehninger Principles of Biochemistry. Bloomsbury Academic. 1260 p.
  5. Рем К.-Г., Кельман Я. 2021. Наглядная биохимия. М.: Бином, Лаборатория знаний. 512 с.
  6. Bleck C.K.E., Kim, Y., Willingham, T.B., Glancy, B. 2018. Subcellular connectomic analyses of energy networks in striated muscle. Nat. Commun. 9, 5111.
  7. Valente A.J., Fonseca J., Moradi F., Foran G., Necakov A., Stuart J.A. 2019. Quantification of mitochondrial network characteristics in health and disease. Adv. Exp. Med. Biol. 1158, 183–196. https://doi.org/10.1007/978-981-13-8367-0_10
  8. Белякович А.Г. 1990. Изучение митохондрий и бактерий с помощью соли тетразолия п-НТФ. ОНТИ НЦБИ АН СССР. 232 с.
  9. Tait S.W., Green D.R. 2013. Mitochondrial regulation of cell death. Cold Spring Harb Perspect Biol. 5 (9), a008706. https://doi.org/10.1101/cshperspect.a008706
  10. S Allemailem K., Almatroudi A., Alsahli M.A., Aljaghwani A., M. El-Kady A., Rahmani A.H., Khan A.A. 2021. Novel strategies for disrupting cancer-cell functions with mitochondria-targeted antitumor drug-loaded nanoformulations. Int. J. Nanomedicine. 16, 3907–3936. https://doi.org/10.2147/IJN.S303832
  11. Dong L., Neuzil J. 2019. Targeting mitochondria as an anticancer strategy. Cancer Commun. (Lond). 39 (1), 1–3. https://doi.org/10.1186/s40880-019-0412-6
  12. Reddy M.S., Bhattacharjee D., Jain N. 2022. Plk1 regulates mutant IDH1 enzyme activity and mutant IDH2 ubiquitination in mitosis. Cell. Signalling. 92, 110279. https://doi.org/10.1016/j.cellsig.2022.110279
  13. Hanaford A.R., Alt J., Rais R., Wang S.Z., Kaur H., Thorek D.L.J., Eberhart C.G., Slusher B.S., Martin A.M., Raabe E.H. 2019. Orally bioavailable glutamine antagonist prodrug JHU-083 penetrates mouse brain and suppresses the growth of MYC-driven medulloblastoma. Transl. Oncol. 12 (10), 1314–1322. https://doi.org/10.1016/j.tranon.2019.05.013
  14. Li Q., Zhong X., Yao W., Yu J., Wang C., Li Z., Lai S., Qu F., Fu X., Huang X., Zhang D., Liu Y., Li H. 2022. Inhibitor of glutamine metabolism V9302 promotes ROS-induced autophagic degradation of B7H3 to enhance antitumor immunity. J. Biol. Chem. 298 (4), 101753. https://doi.org/10.1016/j.jbc.2022.101753
  15. Cao K., Riley J.S., Heilig R., Montes-Gómez A.E., Vringer E., Berthenet K., Cloix C., Elmasry Y., Spiller D.G., Ichim G., Campbell K.J., Gilmore A.P., Tait S.W.G. 2022. Mitochondrial dynamics regulate genome stability via control of caspase-dependent DNA damage. Dev. Cell. 57 (10), 1211–1225. https://doi.org/10.1016/j.devcel.2022.03.019
  16. Forrest M.D. 2015. Why cancer cells have a more hyperpolarised mitochondrial membrane potential and emergent prospects for therapy. BioRxiv. 025197. https://doi.org/10.1101/025197
  17. Weiner-Gorzel K., Murphy M. 2021. Mitochondrial dynamics, a new therapeutic target for triple negative breast cancer. Biochim. Biophys. Acta (BBA) Reviews on Cancer. 1875 (2), 188518. https://doi.org/10.1016/j.bbcan.2021.188518
  18. Bae Y., Jung M.K., Song S.J., Green E.S., Lee S., Park H.S., Jeong S.H., Han J., Mun J.Y., Ko K.S., Choi J.S. 2017. Functional nanosome for enhanced mitochondria-targeted gene delivery and expression. Mitochondrion. 37, 27–40. https://doi.org/10.1016/j.mito.2017.06.005
  19. Zielonka J., Joseph J., Sikora A., Hardy M., Ouari O., Vasquez-Vivar J., Cheng G., Lopez M., Kalyanaraman B. 2017. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem. Rev. 117 (15), 10 043–10 120. https://doi.org/10.1021/acs.chemrev.7b00042
  20. Murphy M.P. 1997. Selective targeting of bioactive compounds to mitochondria. Trends Biotech. 15 (8), 326–330. https://doi.org/10.1016/S0167-7799(97)01068-8
  21. Burns R.J., Smith R.A.J., Murphy M.P. 1995. Synthesis and characterization of thiobutyltriphenylphosphonium bromide, a novel thiol reagent targeted to the mitochondrial matrix. Arch. Biochem. Biophys. 322 (1), 60–68. https://doi.org/10.1006/abbi.1995.1436
  22. Burns R.J., Murphy M.P. 1997. Labeling of mitochondrial proteins in living cells by the thiol probe thiobutyltriphenylphosphonium bromide. Arch. Biochem. Biophys. 339 (1), 33–39. https://doi.org/10.1006/abbi.1996.9861
  23. Smith R.A., Porteous C.M., Gane A.M., Murphy M.P. 2003. Delivery of bioactive molecules to mitochondria in vivo. Proc. Nat. Acad. Sci. USA. 100 (9), 5407–5412. https://doi.org/10.1073/pnas.0931245100
  24. Su Y., Tu Y., Lin H., Wang M.M., Zhang G.D., Yang J., Liu H.K., Su Z. 2022. Mitochondria-targeted Pt (IV) prodrugs conjugated with an aggregation-induced emission luminogen against breast cancer cells by dual modulation of apoptosis and autophagy inhibition. J. Inorg. Biochem. 226, 111653. https://doi.org/10.1016/j.jinorgbio.2021.111653
  25. Huang M., Myers C.R., Wang Y., You M. 2021. Mitochondria as a novel target for cancer chemoprevention: Emergence of mitochondrial-targeting agents. Cancer Prev, Res. 14 (3), 285–306. https://doi.org/10.1158/1940-6207.CAPR-20-0425
  26. Bailly C. 2021. Medicinal applications and molecular targets of dequalinium chloride. Biochem. Pharmacol. 186, 114467. https://doi.org/10.1016/j.bcp.2021.114467
  27. Shi M., Zhang J., Li X., Pan S., Li J., Yang C., Hu H., Qiao M., Chen D., Zhao X. 2018. Mitochondria-targeted delivery of doxorubicin to enhance antitumor activity with HER-2 peptide-mediated multifunctional pH-sensitive DQAsomes. Int. J. Nanomedicine. 13, 4209–4226. https://doi.org/10.2147/IJN.S163858
  28. Bailly C. 2021. Medicinal applications and molecular targets of dequalinium chloride. Biochem. Pharmacol. 186, 114467. https://doi.org/10.1016/j.bcp.2021.114467
  29. Mallick S., Thuy L.T., Lee S., Park J.I., Choi J.S. 2018. Liposomes containing cholesterol and mitochondria-penetrating peptide (MPP) for targeted delivery of antimycin A to A549 cells. Colloids Surf. B. Biointerfaces. 161, 356–364. https://doi.org/10.1016/j.colsurfb.2017.10.052
  30. Somsri S., Mungthin M., Klubthawee N., Adisakwattana P., Hanpithakpong W., Aunpad R.A. 2021. Mitochondria-penetrating peptide exerts potent anti-plasmodium activity and localizes at parasites’ mitochondria. Antibiotics (Basel). 10 (12), 1560. https://doi.org/10.3390/antibiotics10121560
  31. Szeto H.H. 2006. Cell-permeable, mitochondrial-targeted, peptide antioxidants. The AAPS J. 8 (2), E277–E283. https://doi.org/10.1007/BF02854898
  32. Szeto H.H., Schiller P.W. 2011. Novel therapies targeting inner mitochondrial membrane–from discovery to clinical development. Pharm Res. 28 (11), 2669–2679. https://doi.org/10.1007/s11095-011-0476-8
  33. Haftcheshmeh S.M., Jaafari M.R, Mashreghi M., Mehrabian A., Alavizadeh S.H, Zamani P., Zarqi J., Darvishi M.H., Gheybi F. 2021. Liposomal doxorubicin targeting mitochondria: A novel formulation to enhance anti-tumor effects of Doxil® in vitro and in vivo. J. Drug Delivery Sci.Technol. 62, 102351. https://doi.org/10.1016/j.jddst.2021.102351
  34. Bae Y., Kim G., Jessa F., Ko K.S., Han J. 2022. Gallic acid-mitochondria targeting sequence-H3R9 induces mitochondria-targeted cytoprotection. Korean J. Physiol. Pharmacol. 26, 15–24. https://doi.org/10.4196/kjpp.2022.26.1.15
  35. Tee T.T., Cheah Y.H., Hawariah L.P. 2007. F16, a fraction from Eurycoma longifolia jack extract, induces apoptosis via a caspase-9-independent manner in MCF-7 cells. Anticancer Res. 27 (5A), 3425–3430.
  36. Dubinin M.V., Semenova A.A., Nedopekina D.A., Davletshin E.V., Spivak A.Y., Belosludtsev K.N. 2021. Effect of F16-betulin conjugate on mitochondrial membranes and its role in cell death initiation. Membranes. 11 (5), 352. https://doi.org/10.3390/membranes11050352
  37. Dubinin M.V., Semenova A.A., Ilzorkina A.I., Penkov N.V., Nedopekina D.A., Sharapov V.A., Khoroshavina E.I., Davletshin E.V., Belosludtseva N.V., Spivak A.Y., Belosludtsev K.N. 2021. Mitochondria-targeted prooxidant effects of betulinic acid conjugated with delocalized lipophilic cation F16. Free Radic. Biol. Med. 168, 55–69. https://doi.org/10.1016/j.freeradbiomed.2021.03.036
  38. Watley R.L., Awuah S.G., Bio M., Cantu R., Gobeze H.B., Nesterov V.N., Das S.K., D’Souza F., You Y. 2015. Dual functioning thieno-pyrrole fused BODIPY dyes for NIR optical imaging and photodynamic therapy: Singlet oxygen generation without heavy halogen atom assistance. Chem. Asian J. 10, 1335–1343. https://doi.org/10.1002/asia.201500140
  39. Belosludtsev K.N., Ilzorkina A.I., Belosludtseva N.V., Sharapov V.A., Penkov N.V., Serov D.A., Karagyaur M.N., Nedopekina D.A., Davletshin E.V., Solovieva M.E., Spivak A.Y., Kuzmina U.S., Vakhitova Y.V., Akatov V.S., Dubinin M.V. 2022. Comparative study of cytotoxic and membranotropic properties of betulinic acid-F16 conjugate on breast adenocarcinoma cells (MCF-7) and primary human fibroblasts. Biomedicines. 10 (11), 2903. https://doi.org/10.3390/biomedicines10112903
  40. Zhang D., Wen L., Huang R., Wang H., Hu X., Xing D. 2018. Mitochondrial specific photodynamic therapy by rare-earth nanoparticles mediated near-infrared graphene quantum dots. Biomaterials. 153, 14–26. https://doi.org/10.1016/j.biomaterials.2017.10.034
  41. Khailova L.S,. Silachev D.N., Rokitskaya T.I., Avetisyan A.V., Lyamsaev K.G., Severina I.I., Il’yasova T.M., Gulyaev M.V., Dedukhova V.I., Trendeleva T.A., Plotnikov E.Y., Zvyagilskaya R.A., Chernyak B.V., Zorov D.B., Antonenko Y.N., Skulachev V.P. 2014. A short-chain alkyl derivative of Rhodamine 19 acts as a mild uncoupler of mitochondria and a neuroprotector. Biochim. et Biophys. Acta (BBA) – Bioenerget. 1837 (10), 1739–1747. https://doi.org/10.1016/j.bbabio.2014.07.006
  42. Lei E.K., Kelley S.O. 2017. Delivery and release of small-molecule probes in mitochondria using traceless linkers. J. Amer. Chem. Soc. 139 (28), 9455–9458. https://doi.org/10.1021/jacs.7b04415
  43. Ripcke J., Zarse K., Ristow M., Birringer M. 2009. Small-molecule targeting of the mitochondrial compartment with an endogenously cleaved reversible tag. ChemBioChem. 10.(10), 1689–1696. https://doi.org/10.1002/cbic.200900159
  44. Pathak R.K., Marrache S., Harn D.A., Dhar S. 2014. Mito-DCA: A mitochondria targeted molecular scaffold for efficacious delivery of metabolic modulator dichloroacetate. ACS Chem. Biol. 9 (5), 1178–1187. https://doi.org/10.1021/cb400944y
  45. Battogtokh G., Choi Y.S., Kang D.S., Park S.J., Shim M.S., Huh K.M., Kang H.C. 2018. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives. Acta Pharmaceutica Sinica B. 8 (6), 862–880. https://doi.org/10.1016/j.apsb.2018.05.006
  46. Dubinin M.V., Semenova A.A., Ilzorkina A.I., Penkov N.V., Nedopekina D.A., Sharapov V.A., Khoroshavina E.I., Davletshin E.V., Belosludtseva N.V., Spivak A.Yu, Belosludtsev K.N. 2021. Mitochondria-targeted prooxidant effects of betulinic acid conjugated with delocalized lipophilic cation F1. Free Radical Biol. and Medicine. 168, 55–69. https://doi.org/10.1016/j.freeradbiomed.2021.03.036
  47. Mojarad-Jabali S., Farshbaf M., Walker P.R., Hemmati S., Fatahi Y., Zakeri-Milani P., Sarfraz M., Valizadeh H. 2021. An update on actively targeted liposomes in advanced drug delivery to glioma. Int. J. Pharmaceutics. 602, 120645. https://doi.org/10.1016/j.ijpharm.2021.120645
  48. Turetskiy E.A., Koloskova O.O., Nosova A.S., Shilovskiy I.P., Sebyakin Y.L., Khaitov M.R. 2017. Physicochemical properties of lipopeptide-based liposomes and their complexes with siRNA. Biomed. Khim. 63 (5), 472–475. Russian. https://doi.org/10.18097/PBMC20176305472
  49. Liu P., Chen G., Zhang J. 2022. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules. 27 (4), 1372. https://doi.org/10.3390/molecules27041372
  50. Yamada Y., Akita H., Kamiya H., Kogure K., Yamamoto T., Shinohara Y., Yamashita K., Kobayashi H., Kikuchi H., Harashima H. 2008. MITO-Porter: A liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim. et Biophys. Acta (BBA)-Biomembranes. 1778 (2), 423–432. https://doi.org/10.1016/j.bbamem.2007.11.002
  51. Yamada Y., Nakamura K., Abe J., Hyodo M., Haga S., Ozaki M., Harashima H. 2015. Mitochondrial delivery of coenzyme Q10 via systemic administration using a MITO-Porter prevents ischemia/reperfusion injury in the mouse liver. J. Control. Release. 213, 86–95. https://doi.org/10.1016/j.jconrel.2015.06.037
  52. Yamada Y., Tabata M., Yasuzaki Y., Nomura M., Shibata A., Ibayashi Y., Taniguchi Y., Sasaki S., Harashima H. 2014. A nanocarrier system for the delivery of nucleic acids targeted to a pancreatic beta cell line. Biomaterials. 35 (24), 6430–6438. https://doi.org/10.1016/j.biomaterials.2014.04.017
  53. Yamada Y., Maruyama M., Kita T., Usami S.I., Kitajiri S.I., Harashima H. 2020. The use of a MITO-Porter to deliver exogenous therapeutic RNA to a mitochondrial disease’s cell with a A1555G mutation in the mitochondrial 12S rRNA gene results in an increase in mitochondrial respiratory activity. Mitochondrion. 55, 134–144. https://doi.org/10.1016/j.mito.2020.09.008
  54. Lu J., Li R., Mu B., Peng Y., Zhao Y., Shi Y., Guo L., Hai L., Wu Y. 2022. Multiple targeted doxorubicin-lonidamine liposomes modified with p-hydroxybenzoic acid and triphenylphosphonium to synergistically treat glioma. Eur. J. Med. Chem. 230, 114093. https://doi.org/10.1016/j.ejmech.2021.114093
  55. Thomas A.P., Lee A.J., Palanikumar L, Jana B., Kim K., Kim S., Ok H., Seol J., Kim D., Kang B.H., Ryu J.H. 2019. Mitochondrial heat shock protein-guided photodynamic therapy. Chem. Commun. (Camb.). 55 (84), 12 631–12 634. https://doi.org/10.1039/c9cc06411g
  56. Jiang L., Zhou S., Zhang X., Li C., Ji S., Mao H., Jiang X. 2021. Mitochondrion-specific dendritic lipopeptide liposomes for targeted sub-cellular delivery. Nature Comm. 12, 2390. https://doi.org/10.1038/s41467-021-22594-2
  57. Cao Z., Zhu W., Wang W., Zhang C., Xu M., Liu J., Feng S.T., Jiang Q., Xie X. 2014. Stable cerasomes for simultaneous drug delivery and magnetic resonance imaging. Int. J. Nanomedicine. 9, 5103–5116. https://doi.org/10.2147/IJN.S66919
  58. Gileva A., Sarychev G., Kondrya U., Mironova M., Sapach A., Selina O., Budanova U., Burov S., Sebyakin Y., Markvicheva E. 2019. Lipoamino acid-based cerasomes for doxorubicin delivery: Preparation and in vitro evaluation. Mater. Sci. Eng. C Mater. Biol. Appl. 100, 724–734. https://doi.org/10.1016/j.msec.2019.02.111
  59. Wang Y., Wang B., Liao H., Song X., Wu H., Wang H., Shen H., Ma X., Tan M. 2015. Liposomal nanohybrid cerasomes for mitochondria-targeted drug delivery. J. Mater. Chem. B. 3 (36), 7291–7299. https://doi.org/10.1039/c5tb01197c
  60. Damrongrak K., Kloysawat K., Bunsupa S., Sakchasri K., Wongrakpanich A., Taresco V., Cuzzucoli Crucitti V., Garnett M.C., Suksiriworapong J. 2022. Delivery of acetogenin-enriched Annona muricata Linn leaf extract by folic acid-conjugated and triphenylphosphonium-conjugated poly (glycerol adipate) nanoparticles to enhance toxicity against ovarian cancer cells. Int. J. Pharm. 618, 121636. https://doi.org/10.1016/j.ijpharm.2022.121636
  61. Wang Z., Sun C., Wu H., Xie J., Zhang T., Li Y., Xu X., Wang P., Wang C. 2021. Cascade targeting codelivery of ingenol-3-angelate and doxorubicin for enhancing cancer chemoimmunotherapy through synergistic effects in prostate cancer. Mater. Today Bio. 13, 100189. https://doi.org/10.1016/j.mtbio.2021.100189
  62. Wang H., Zhang F., Wen H., Shi W., Huang Q., Huang Y., Xie J., Li P., Chen J, Qin L., Zhou Y. 2020. Tumor- and mitochondria-targeted nanoparticles eradicate drug resistant lung cancer through mitochondrial pathway of apoptosis. J. Nanobiotechnol. 18 (1), 8. https://doi.org/10.1186/s12951-019-0562-3
  63. Xu Y., Wang S., Chan H.F., Liu Y., Li H., He C., Li Z., Chen M. 2017. Triphenylphosphonium-modified poly(ethylene glycol)-poly(ε-caprolactone) micelles for mitochondria-targeted gambogic acid delivery. Int. J. Pharm. 522 (1–2), 21–33. https://doi.org/10.1016/j.ijpharm.2017.01.064
  64. Wang J., Li B., Qiu L., Qiao X., Yang H. 2022. Dendrimer-based drug delivery systems: History, challenges, and latest developments. J. Biol. Eng. 16 (1), 18. https://doi.org/10.1186/s13036-022-00298-5
  65. Liang S., Sun C., Yang P., Ma P., Huang S., Cheng Z., Yu X., Lin J. 2020. Core-shell structured upconversion nanocrystal-dendrimer composite as a carrier for mitochondria targeting and catalase enhanced anti-cancer photodynamic therapy. Biomaterials. 240, 119850. https://doi.org/10.1016/j.biomaterials.2020.119850
  66. Johnson L.V., Walsh M.L., Chen L.B. 1980. Localization of mitochondria in living cells with rhodamine 123. Proc. Nat. Acad. Sci. USA. 77 (2), 990–994. https://doi.org/10.1073/pnas.77.2.990
  67. Summerhayes I.C., Lampidis T.J., Bernal S.D., Nadakavukaren J.J., Nadakavukaren KK, Shepherd E.L., Chen L.B. 1982. Unusual retention of rhodamine 123 by mitochondria in muscle and carcinoma cells. Proc. Nat. Acad. Sci. USA. 79 (17), 5292–5296. https://doi.org/10.1073/pnas.79.17.5292

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (883KB)
3.

Download (125KB)
4.

Download (237KB)
5.

Download (34KB)
6.

Download (257KB)
7.

Download (251KB)
8.

Download (30KB)
9.

Download (30KB)
10.

Download (433KB)
11.

Download (575KB)
12.

Download (45KB)

Copyright (c) 2023 А.П. Садиков, З.Г. Дениева, У.А. Буданова, Ю.Л. Себякин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies