The Role of Lipid Domains and Physical Properties of Membranes in the Development of Age-Related Neurodegenerative Diseases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A growing number of studies indicate the relationship between the development of neurodegenerative diseases and the structure and lipid composition of neuronal membranes. One of the structural elements of cell membranes, which in this regard attracts special attention, are liquid-ordered lipid domains, or rafts. The study of rafts and age-related changes in the lipid composition of neuronal cells is becoming increasingly relevant and is constantly being updated. In this review, we tried to highlight the possible role of the lipid component of cell membranes, their structure, and physicochemical characteristics in the development of diseases associated with aging. The reviewed evidence supports the possible role of rafts in diseases, which lead to disruption of the functioning of neurons over a long period of time. There is reason to believe that the therapeutic effects of various molecules, such as lysolipids and gangliosides, are due to their physicochemical properties and are realized indirectly, through their influence on the organization of lipid domains in membranes. As the role of lipid domains and, in general, the mechanisms of interaction and mutual influence of lipid composition and disease development are more fully understood, this knowledge can be used to develop new therapeutic or preventive methods to combat diseases associated with aging.

About the authors

V. D. Krasnobaev

Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (NRU)

Email: olegbati@gmail.com
Russia, 119071, Moscow; Russia, 141701, Dolgoprudny

O. V. Batishchev

Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Author for correspondence.
Email: olegbati@gmail.com
Russia, 119071, Moscow

References

  1. Piller C. 2022. Blots on a field? Science. 377, 358–363.
  2. Lobello K., Ryan J.M., Liu E., Rippon G., Black R. 2012. Targeting beta amyloid: A clinical review of immunotherapeutic approaches in Alzheimer’s disease. Int. J. Alzheimerx2019s Dis. 2012, e628070.
  3. Schengrund C.-L. 2010. Lipid rafts: Keys to neurodegeneration. Brain Res. Bull. 82, 7–17.
  4. Mollinedo F., Gajate C. 2015. Lipid rafts as major platforms for signaling regulation in cancer. Adv. Biol. Regul. 57, 130–146.
  5. Munro S. 2003. Lipid rafts: Elusive or illusive? Cell. 115, 377–388.
  6. Levental I., Levental K.R., Heberle F.A. 2020. Lipid rafts: Controversies resolved, mysteries remain. Trends Cell Biol. 30, 341–353.
  7. Ferrara A., Barrett-Connor E., Shan J. 1997. Total, LDL, and HDL cholesterol decrease with age in older men and women. The Rancho Bernardo Study 1984–1994. Circulation. 96, 37–43.
  8. Berns M.A., de Vries J.H., Katan M.B. 1988. Determinants of the increase of serum cholesterol with age: A longitudinal study. Int. J. Epidemiol. 17, 789–796.
  9. Shiomi M., Ito T., Fujioka T., Tsujita Y. 2000. Age-associated decrease in plasma cholesterol and changes in cholesterol metabolism in homozygous Watanabe heritable hyperlipidemic rabbits. Metabolism. 49, 552–556.
  10. van Meer G., Voelker D.R., Feigenson G.W. 2008. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124.
  11. Simons K., van Meer G. 1988. Lipid sorting in epithelial cells. Biochemistry. 27, 6197–6202.
  12. Lagerholm B.C., Weinreb G.E., Jacobson K., Thompson N.L. 2005. Detecting microdomains in intact cell membranes. Annu. Rev. Phys. Chem. 56, 309–336.
  13. Simons K., Ikonen E. 1997. Functional rafts in cell membranes. Nature. 387, 569–572.
  14. Anderson R.G.W., Jacobson K. 2002. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science. 296, 1821–1825.
  15. Pike L.J. 2006. Rafts defined: A report on the Keystone symposium on lipid rafts and cell function. J. Lipid Res. 47, 1597–1598.
  16. Epand R.M. 2008. Proteins and cholesterol-rich domains. Biochim. Biophys. Acta. 1778, 1576–1582.
  17. Mañes S., Mira E., Gómez-Moutón C., Lacalle R.A., Keller P., Labrador J.P., Martínez-A C. 1999. Membrane raft microdomains mediate front-rear polarity in migrating cells. EMBO J. 18, 6211–6220.
  18. Aman M.J., Ravichandran K.S. 2000. A requirement for lipid rafts in B cell receptor induced Ca2+ flux. Curr. Biol. 10, 393–396. https://doi.org/10.1016/s0960-9822(00)00415-2
  19. Lamaze C., Dujeancourt A., Baba T., Lo C.G., Benmerah A., Dautry-Varsat A. 2001. Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol. Cell. 7, 661–671.
  20. Jahn R., Scheller R.H. 2006. SNAREs–engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643.
  21. Salaün C., Gould G.W., Chamberlain L.H. 2005. Lipid raft association of SNARE proteins regulates exocytosis in PC12 cells. J. Biol. Chem. 280, 19449–19453.
  22. Suzuki T., Zhang J., Miyazawa S., Liu Q., Farzan M.R., Yao W.-D. 2011. Association of membrane rafts and postsynaptic density: Proteomics, biochemical, and ultrastructural analyses. J. Neurochem. 119, 64–77.
  23. Suzuki S., Numakawa T., Shimazu K., Koshimizu H., Hara T., Hatanaka H., Mei L., Lu B., Kojima M. 2004. BDNF-induced recruitment of TrkB receptor into neuronal lipid rafts: Roles in synaptic modulation. J. Cell Biol. 167, 1205–1215.
  24. Pereira D.B., Chao M.V. 2007. The tyrosine kinase Fyn determines the localization of TrkB receptors in lipid rafts. J. Neurosci. Off. J. Soc. Neurosci. 27, 4859–4869.
  25. Pryor S., McCaffrey G., Young L.R., Grimes M.L. 2012. NGF causes TrkA to specifically attract microtubules to lipid rafts. PloS One. 7, e35163.
  26. Colin J., Gregory-Pauron L., Lanhers M.-C., Claudepierre T., Corbier C., Yen F.T., Malaplate-Armand C., Oster T. 2016. Membrane raft domains and remodeling in aging brain. Biochimie. 130, 178–187.
  27. Stier A., Sackmann E. 1973. Spin labels as enzyme substrates heterogeneous lipid distribution in liver microsomal membranes. Biochim. Biophys. Acta BBA – Biomembr. 311, 400–408.
  28. Karnovsky M.J., Kleinfeld A.M., Hoover R.L., Dawidowicz E.A., McIntyre D.E., Salzman E.A., Klausner R.D. 1982. Lipid domains in membranes. Ann. N. Y. Acad. Sci. 401, 61–74. https://doi.org/10.1083/jcb.94.1.1
  29. Estep T.N., Mountcastle D.B., Barenholz Y., Biltonen R.L., Thompson T.E. 1979. Thermal behavior of synthetic sphingomyelin-cholesterol dispersions. Biochemistry. 18, 2112–2117.
  30. Goodsaid-Zalduondo F., Rintoul D., Carlson J., Hansel W. 1982. Luteolysis-induced changes in phase composition and fluidity of bovine luteal cell membranes. Proc. Natl. Acad. Sci. USA.79 (14), 4332–4336. https://doi.org/10.1073/pnas.79.14.4332
  31. Samsonov A.V., Mihalyov I., Cohen F.S. 2001. Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes. Biophys. J. 81, 1486–1500.
  32. Baumgart T., Hess S.T., Webb W.W. 2003. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature. 425, 821–824.
  33. Veatch S.L., Cicuta P., Sengupta P., Honerkamp-Smith A., Holowka D., Baird B. 2008. Critical fluctuations in plasma membrane vesicles. ACS Chem. Biol. 3, 287–293.
  34. Veatch S.L., Keller S.L. 2005. Seeing spots: Complex phase behavior in simple membranes. Biochim. Biophys. Acta. 1746, 172–185.
  35. Gil T., Sabra M.C., Ipsen J.H., Mouritsen O.G. 1997. Wetting and capillary condensation as means of protein organization in membranes. Biophys. J. 73, 1728–1741.
  36. Akimov S.A., Frolov V.A.J., Kuzmin P.I., Zimmerberg J., Chizmadzhev Y.A., Cohen F.S. 2008. Domain formation in membranes caused by lipid wetting of protein. Phys. Rev. E. 77, 051901.
  37. Nichols B. 2003. Caveosomes and endocytosis of lipid rafts. J. Cell Sci. 116, 4707–4714.
  38. Allen J.A., Halverson-Tamboli R.A., Rasenick M.M. 2007. Lipid raft microdomains and neurotransmitter signalling. Nat. Rev. Neurosci. 8, 128–140.
  39. Scheiffele P., Rietveld A., Wilk T., Simons K. 1999. Influenza viruses select ordered lipid domains during budding from the plasma membrane. J. Biol. Chem. 274, 2038–2044.
  40. Gniadecki R., Poumay Y. 2009. Lipid rafts and keratinocyte apoptosis: Regulation death receptors and Akt. Open Dermatol. J. 3, 163–165.
  41. Campbell S.M., Crowe S.M., Mak J. 2001. Lipid rafts and HIV-1: From viral entry to assembly of progeny virions. J. Clin. Virol. 22, 217–227.
  42. Suomalainen M. 2002. Lipid rafts and assembly of enveloped viruses. Traffic. 3, 705–709.
  43. Simons K., Toomre D. 2000. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39.
  44. Baird B., Sheets E.D., Holowka D. 1999. How does the plasma membrane participate in cellular signaling by receptors for immunoglobulin E? Biophys. Chem. 82, 109–119.
  45. Hong S., Huo H., Xu J., Liao K. 2004. Insulin-like growth factor-1 receptor signaling in 3T3-L1 adipocyte differentiation requires lipid rafts but not caveolae. Cell Death Differ. 11, 714–723.
  46. Janes P.W., Ley S.C., Magee A.I., Kabouridis P.S. 2000. The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin. Immunol. 12, 23–34.
  47. Langlet C., Bernard A.M., Drevot P., He H.T. 2000. Membrane rafts and signaling by the multichain immune recognition receptors. Curr. Opin. Immunol. 12, 250–255.
  48. Cheng P.C., Dykstra M.L., Mitchell R.N., Pierce S.K. 1999. A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J. Exp. Med. 190, 1549–1560.
  49. Kapus A., Janmey P. 2013. Plasma membrane–cortical cytoskeleton interactions: A cell biology approach with biophysical considerations. Compr. Physiol. 3 (3), 1231–1281. https://doi.org/10.1002/cphy.c120015
  50. Fowler V.M. 2013. The human erythrocyte plasma membrane: A Rosetta Stone for decoding membrane–cytoskeleton structure. Curr Top Membr. 72, 39–88. https://doi.org/10.1016/B978-0-12-417027-8.00002-7
  51. Varma R., Mayor S. 1998. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature. 394, 798–801.
  52. Sezgin E., Levental I., Mayor S., Eggeling C. 2017. The mystery of membrane organization: Composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18, 361–374.
  53. Berchtold N.C., Cotman C.W. 1998. Evolution in the conceptualization of dementia and Alzheimer’s disease: Greco-Roman period to the 1960s. Neurobiol. Aging. 19, 173–189.
  54. Tiraboschi P., Hansen L.A., Thal L.J., Corey-Bloom J. 2004. The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology. 62, 1984–1989.
  55. Liu Q., Zerbinatti C.V., Zhang J., Hoe H.-S., Wang B., Cole S.L., Herz J., Muglia L., Bu G. 2007. Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1. Neuron. 56, 66–78.
  56. Beel A.J., Mobley C.K., Kim H.J., Tian F., Hadziselimovic A., Jap B., Prestegard J.H., Sanders C.R. 2008. Structural studies of the transmembrane C-terminal domain of the amyloid precursor protein (APP): Does APP function as a cholesterol sensor? Biochemistry. 47, 9428–9446.
  57. Masaldan S., Bush A.I., Devos D., Rolland A.S., Moreau C. 2019. Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration. Free Radic. Biol. Med. 133, 221–233.
  58. Duce J.A., Tsatsanis A., Cater M.A., James S.A., Robb E., Wikhe K., Leong S.L., Perez K., Johanssen T., Greenough M.A., Cho H., Galatis D., Moir R.D., Masters C.L., McLean C., Tanzi R.E., Cappai R., Barnham K.J., Ciccotosto G.D., Rogers J.T., Bush A.I. 2010. Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell. 142, 857–867.
  59. Webers A., Heneka M.T., Gleeson P.A. 2020. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer’s disease. Immunol. Cell Biol. 98, 28–41.
  60. Soscia S.J., Kirby J.E., Washicosky K.J., Tucker S.M., Ingelsson M., Hyman B., Burton M.A., Goldstein L.E., Duong S., Tanzi R.E., Moir R.D. 2010. The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PloS One. 5, e9505.
  61. Gouras G.K., Olsson T.T., Hansson O. 2015. β-Amyloid peptides and amyloid plaques in Alzheimer’s disease. Neurotherapeutics.12 (1), 3–11. https://doi.org/10.1007/s13311-014-0313-y
  62. Koh J.Y., Yang L.L., Cotman C.W. 1990. Beta-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res. 533, 315–320.
  63. Miranda S., Opazo C., Larrondo L.F., Muñoz F.J., Ruiz F., Leighton F., Inestrosa N.C. 2000. The role of oxidative stress in the toxicity induced by amyloid beta-peptide in Alzheimer’s disease. Prog. Neurobiol. 62, 633–648.
  64. Pike C.J., Burdick D., Walencewicz A.J., Glabe C.G., Cotman C.W. 1993. Neurodegeneration induced by beta-amyloid peptides in vitro: The role of peptide assembly state. J. Neurosci. 13 (4), 1676–1687. https://doi.org/10.1523/JNEUROSCI.13-04-01676.1993
  65. Morris G.P., Clark I.A., Vissel B. 2014. Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer’s disease. Acta Neuropathol. Commun. 2, 135.
  66. Jang H., Connelly L., Arce F.T., Ramachandran S., Lal R., Kagan B.L., Nussinov R. 2013. Alzheimer’s disease: Which type of amyloid-preventing drug agents to employ? Phys. Chem. Chem. Phys. 15 (23), 8868–8877. https://doi.org/10.1039/c3cp00017f
  67. Rosenblum W.I. 2014. Why Alzheimer trials fail: Removing soluble oligomeric beta amyloid is essential, inconsistent, and difficult. Neurobiol. Aging. 35, 969–974.
  68. Cole S.L., Vassar R. 2007. The Alzheimer’s disease beta-secretase enzyme, BACE1. Mol. Neurodegener. 2, 22. https://doi.org/10.1186/1750-1326-2-22
  69. Uversky V.N. 2009. Intrinsic disorder in proteins associated with neurodegenerative diseases. Front. Biosci. (Landmark Ed). 14 (14), 5188–5238. https://doi.org/10.2741/3594
  70. Lührs T., Ritter C., Adrian M., Riek-Loher D., Bohrmann B., Döbeli H., Schubert D., Riek R. 2005. 3D structure of Alzheimer’s amyloid-beta(1-42) fibrils. Proc. Natl. Acad. Sci. USA. 102, 17342–17347.
  71. Kumar-Singh S., Dewachter I., Moechars D., Lübke U., Jonghe C.D., Ceuterick C., Checler F., Naidu A., Cordell B., Cras P., Broeckhoven C.V., Leuven F.V. 2000. Behavioral disturbances without amyloid deposits in mice overexpressing human amyloid precursor protein with Flemish (A692G) or Dutch (E693Q) mutation. Neurobiol. Dis. 7, 9–22.
  72. Murrell J.R., Hake A.M., Quaid K.A., Farlow M.R., Ghetti B. 2000. Early-onset Alzheimer disease caused by a new Mutation (V717L) in the amyloid precursor protein gene. Arch. Neurol. 57, 885.
  73. Dimitrov M., Alattia J.-R., Lemmin T., Lehal R., Fligier A., Houacine J., Hussain I., Radtke F., Dal Peraro M., Beher D., Fraering P.C. 2013. Alzheimer’s disease mutations in APP but not γ-secretase modulators affect epsilon-cleavage-dependent AICD production. Nat. Commun. 4, 2246.
  74. Peters C., Bascuñán D., Opazo C., Aguayo L.G. 2016. Differential membrane toxicity of amyloid-β fragments by pore forming mechanisms. J. Alzheimers Dis. JAD. 51, 689–699.
  75. Wärmländer S.K.T.S., Österlund N., Wallin C., Wu J., Luo J., Tiiman A., Jarvet J., Gräslund A. 2019. Metal binding to the amyloid-β peptides in the presence of biomembranes: Potential mechanisms of cell toxicity. J. Biol. Inorg. Chem. 24 (8), 1189–1196. https://doi.org/10.1007/s00775-019-01723-9
  76. Ngo S.T., Derreumaux P., Vu V.V. 2019. Probable transmembrane amyloid α-helix bundles capable of conducting Ca2+ ions. J. Phys. Chem. B. 123, 2645–2653.
  77. Ariga T., Kobayashi K., Hasegawa A., Kiso M., Ishida H., Miyatake T. 2001. Characterization of high-affinity binding between gangliosides and amyloid beta-protein. Arch. Biochem. Biophys. 388, 225–230.
  78. Fantini J., Yahi N. 2010. Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: Common mechanisms in neurodegenerative diseases. Expert Rev. Mol. Med. 12, e27.
  79. Ehehalt R., Keller P., Haass C., Thiele C., Simons K. 2003. Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. J. Cell Biol. 160, 113–123.
  80. Rushworth J.V., Hooper N.M. 2010. Lipid rafts: Linking Alzheimer’s amyloid-β production, aggregation, and toxicity at neuronal membranes. Int. J. Alzheimers. Dis. 2011, 603052. https://doi.org/10.4061/2011/603052
  81. Strittmatter W.J., Saunders A.M., Schmechel D., Pericak-Vance M., Enghild J., Salvesen G.S., Roses A.D. 1993. Apolipoprotein E: High-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA. 90, 1977–1981.
  82. Qiang W., Yau W.-M., Lu J.-X., Collinge J., Tycko R. 2017. Structural variation in amyloid-β fibrils from Alzheimer’s disease clinical subtypes. Nature. 541, 217–221.
  83. Takahashi R.H., Nagao T., Gouras G.K. 2017. Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer’s disease. Pathol. Int. 67, 185–193.
  84. Srivastava A.K., Pittman J.M., Zerweck J., Venkata B.S., Moore P.C., Sachleben J.R., Meredith S.C. 2019. β-Amyloid aggregation and heterogeneous nucleation. Protein Sci. Publ. Protein Soc. 28, 1567–1581.
  85. Ivanova M.I., Lin Y., Lee Y.-H., Zheng J., Ramamoorthy A. 2021. Biophysical processes underlying cross-seeding in amyloid aggregation and implications in amyloid pathology. Biophys. Chem. 269, 106507.
  86. Reiss A.B., Arain H.A., Stecker M.M., Siegart N.M., Kasselman L.J. 2018. Amyloid toxicity in Alzheimer’s disease. Rev. Neurosci. 29, 613–627.
  87. Tiwari S., Atluri V., Kaushik A., Yndart A., Nair M. 2019. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int. J. Nanomedicine. 14, 5541–5554.
  88. Serra-Batiste M., Ninot-Pedrosa M., Bayoumi M., Gairí M., Maglia G., Carulla N. 2016. Aβ42 assembles into specific β-barrel pore-forming oligomers in membrane-mimicking environments. Proc. Natl. Acad. Sci. USA. 113, 10866–10871.
  89. Ji S.-R., Wu Y., Sui S. 2002. Cholesterol is an important factor affecting the membrane insertion of β-amyloid peptide (Aβ1–40), which may potentially inhibit the fibril formation. J. Biol. Chem. 277, 6273–6279. https://doi.org/10.1074/jbc.M104146200
  90. Di Scala C., Chahinian H., Yahi N., Garmy N., Fantini J. 2014. Interaction of Alzheimer’s β-amyloid peptides with cholesterol: Mechanistic insights into amyloid pore formation. Biochemistry. 53, 4489–4502.
  91. Fantini J., Di Scala C., Yahi N., Troadec J.-D., Sadelli K., Chahinian H., Garmy N. 2014. Bexarotene blocks calcium-permeable ion channels formed by neurotoxic Alzheimer’s β-amyloid peptides. ACS Chem. Neurosci. 5, 216–224.
  92. Shafrir Y., Durell S., Arispe N., Guy H.R. 2010. Models of membrane-bound Alzheimer’s Abeta peptide assemblies. Proteins. 78, 3473–3487.
  93. van Blitterswijk W.J., van der Luit A.H., Veldman R.J., Verheij M., Borst J. 2003. Ceramide: Second messenger or modulator of membrane structure and dynamics? Biochem. J. 369, 199–211.
  94. Han X., M Holtzman D., McKeel D.W., Kelley J., Morris J.C. 2002. Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: Potential role in disease pathogenesis. J. Neurochem. 82, 809–818.
  95. Takahashi K., Ginis I., Nishioka R., Klimanis D., Barone F.C., White R.F., Chen Y., Hallenbeck J.M. 2004. Glucosylceramide synthase activity and ceramide levels are modulated during cerebral ischemia after ischemic preconditioning. J. Cereb. Blood Flow Metab. 24 (6), 623–627. https://doi.org/10.1097/01.WCB.0000119990.06999.A9
  96. Cutler R.G., Kelly J., Storie K., Pedersen W.A., Tammara A., Hatanpaa K., Troncoso J.C., Mattson M.P. 2004. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 101, 2070–2075.
  97. Frisardi V., Panza F., Seripa D., Farooqui T., Farooqui A.A. 2011. Glycerophospholipids and glycerophospholipid-derived lipid mediators: A complex meshwork in Alzheimer’s disease pathology. Prog. Lipid Res. 50, 313–330.
  98. Akiyama H., Barger S., Barnum S., Bradt B., Bauer J., Cole G.M., Cooper N.R., Eikelenboom P., Emmerling M., Fiebich B.L., Finch C.E., Frautschy S., Griffin W.S., Hampel H., Hull M., Landreth G., Lue L., Mrak R., Mackenzie I.R., McGeer P.L., O’Banion M.K., Pachter J., Pasinetti G., Plata-Salaman C., Rogers J., Rydel R., Shen Y., Streit W., Strohmeyer R., Tooyoma I., Van Muiswinkel F.L., Veerhuis R., Walker D., Webster S., Wegrzyniak B., Wenk G., Wyss-Coray T. 2000. Inflammation and Alzheimer’s disease. Neurobiol. Aging. 21, 383–421.
  99. Halder N., Lal G. 2021. Cholinergic system and its therapeutic importance in inflammation and autoimmunity. Front. Immunol. 12, 660342.
  100. Barrantes F.J., Borroni V., Vallés S. 2010. Neuronal nicotinic acetylcholine receptor-cholesterol crosstalk in Alzheimer’s disease. FEBS Lett. 584, 1856–1863.
  101. Zhu D., Xiong W.C., Mei L. 2006. Lipid rafts serve as a signaling platform for nicotinic acetylcholine receptor clustering. J. Neurosci. 26 (18), 4841–4851. https://doi.org/10.1523/JNEUROSCI.2807-05.2006
  102. Coyle J.T., Price D.L., DeLong M.R. 1983. Alzheimer’s disease: A disorder of cortical cholinergic innervation. Science. 219, 1184–1190.
  103. Auld D.S., Kornecook T.J., Bastianetto S., Quirion R. 2002. Alzheimer’s disease and the basal forebrain cholinergic system: Relations to beta-amyloid peptides, cognition, and treatment strategies. Prog. Neurobiol. 68, 209–245.
  104. Schliebs R., Arendt T. 2006. The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J. Neural Transm. (Vienna). 113 (11), 1625–1644. https://doi.org/10.1007/s00702-006-0579-2
  105. Vonsattel J.P., Myers R.H., Stevens T.J., Ferrante R.J., Bird E.D., Richardson E.P. 1985. Neuropathological classification of Huntington’s disease. J. Neuropathol. Exp. Neurol. 44, 559–577.
  106. The Huntington’s Disease Collaborative Research Group. 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 72, 971–983.
  107. Valencia A., Reeves P.B., Sapp E., Li X., Alexander J., Kegel K.B., Chase K., Aronin N., DiFiglia M. 2010. Mutant huntingtin and glycogen synthase kinase 3-beta accumulate in neuronal lipid rafts of a presymptomatic knock-in mouse model of Huntington’s disease. J. Neurosci. Res. 88, 179–190.
  108. Hanagasi H.A., Tufekcioglu Z., Emre M. 2017. Dementia in Parkinson’s disease. J. Neurol. Sci. 374, 26–31.
  109. Bonifati V. 2006. Parkinson’s disease: The LRRK2-G2019S mutation: Opening a novel era in Parkinson’s disease genetics. Eur. J. Hum. Genet. EJHG. 14 (10), 1061–1062. https://doi.org/10.1038/sj.ejhg.5201695
  110. Hatano T., Kubo S.-I., Imai S., Maeda M., Ishikawa K., Mizuno Y., Hattori N. 2007. Leucine-rich repeat kinase 2 associates with lipid rafts. Hum. Mol. Genet. 16, 678–690.
  111. West A.B., Moore D.J., Biskup S., Bugayenko A., Smith W.W., Ross C.A., Dawson V.L., Dawson T.M. 2005. Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl. Acad. Sci. USA. 102, 16842–16847.
  112. Krüger R., Kuhn W., Müller T., Woitalla D., Graeber M., Kösel S., Przuntek H., Epplen J.T., Schöls L., Riess O. 1998. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat. Genet. 18, 106–108.
  113. Singleton A.B., Farrer M., Johnson J., Singleton A., Hague S., Kachergus J., Hulihan M., Peuralinna T., Dutra A., Nussbaum R., Lincoln S., Crawley A., Hanson M., Maraganore D., Adler C., Cookson M.R., Muenter M., Baptista M., Miller D., Blancato J., Hardy J., Gwinn-Hardy K. 2003. alpha-Synuclein locus triplication causes Parkinson’s disease. Science. 302, 841. https://doi.org/10.1126/science.1090278
  114. Fortin D.L., Troyer M.D., Nakamura K., Kubo S., Anthony M.D., Edwards R.H. 2004. Lipid rafts mediate the synaptic localization of alpha-synuclein. J. Neurosci. 24, 6715–6723. https://doi.org/10.1523/JNEUROSCI.1594-04.2004
  115. Martinez Z., Zhu M., Han S., Fink A.L. 2007. GM1 specifically interacts with alpha-synuclein and inhibits fibrillation. Biochemistry. 46, 1868–1877.
  116. Schneider J.S. 1998. GM1 ganglioside in the treatment of Parkinson’s disease. Ann. N.Y. Acad. Sci. 845, 363–373.
  117. Pasinelli P., Brown R.H. 2006. Molecular biology of amyotrophic lateral sclerosis: Insights from genetics. Nat. Rev. Neurosci. 7, 710–723.
  118. Küst B.M., Copray J.C.V.M., Brouwer N., Troost D., Boddeke H.W. 2002. Elevated levels of neurotrophins in human biceps brachii tissue of amyotrophic lateral sclerosis. Exp. Neurol. 177, 419–427. Doi https://doi.org/10.1006/exnr.2002.8011
  119. Annunziata P., Maimone D., Guazzi G.C. 1995. Association of polyclonal anti-GM1 IgM and anti-neurofilament antibodies with CSF oligoclonal bands in a young with amyotrophic lateral sclerosis. Acta Neurol. Scand. 92, 387–393.
  120. Pestronk A., Choksi R. 1997. Multifocal motor neuropathy. Serum IgM anti-GM1 ganglioside antibodies in most patients detected using covalent linkage of GM1 to ELISA plates. Neurology. 49, 1289–1292.
  121. Stevens A., Weller M., Wiethölter H. 1993. A characteristic ganglioside antibody pattern in the CSF of patients with amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry. 56, 361–364.
  122. Söderberg M., Edlund C., Alafuzoff I., Kristensson K., Dallner G. 1992. Lipid composition in different regions of the brain in Alzheimer’s disease/senile dementia of Alzheimer’s type. J. Neurochem. 59, 1646–1653.
  123. Fabelo N., Martín V., Marín R., Moreno D., Ferrer I., Díaz M. 2014. Altered lipid composition in cortical lipid rafts occurs at early stages of sporadic Alzheimer’s disease and facilitates APP/BACE1 interactions. Neurobiol. Aging. 35, 1801–1812.
  124. Wood P.L., Tippireddy S., Feriante J., Woltjer R.L. 2018. Augmented frontal cortex diacylglycerol levels in Parkinson’s disease and Lewy Body Disease. PLoS One. 13 (3), e0191815. https://doi.org/10.1371/journal.pone.0191815
  125. Cheng D., Jenner A.M., Shui G., Cheong W.F., Mitchell T.W., Nealon J.R., Kim W.S., McCann H., Wenk M.R., Halliday G.M., Garner B. 2011. Lipid pathway alterations in Parkinson’s disease primary visual cortex. PLoS One. 6 (2), e17299. https://doi.org/10.1371/journal.pone.0017299
  126. Fanning S., Selkoe D., Dettmer U. 2020. Parkinson’s disease: Proteinopathy or lipidopathy? NPJ Park. Dis. 6, 1–9. https://doi.org/10.1038/s41531-019-0103-7
  127. Stok R., Ashkenazi A. 2020. Lipids as the key to understanding α-synuclein behaviour in Parkinson disease. Nat. Rev. Mol. Cell Biol. 21, 357–358.
  128. Chaves-Filho A.B., Pinto I.F.D., Dantas L.S., Xavier A.M., Inague A., Faria R.L., Medeiros M.H.G., Glezer I., Yoshinaga M.Y., Miyamoto S. 2019. Alterations in lipid metabolism of spinal cord linked to amyotrophic lateral sclerosis. Sci. Rep. 9, 11642.
  129. Dodge J.C., Jensen E.H., Yu J., Sardi S.P., Bialas A.R., Taksir T.V., Bangari D.S., Shihabuddin L.S. 2020. Neutral lipid cacostasis contributes to disease pathogenesis in amyotrophic lateral sclerosis. J. Neurosci. 40, 9137–9147.
  130. Mapstone M., Cheema A.K., Fiandaca M.S., Zhong X., Mhyre T.R., MacArthur L.H., Hall W.J., Fisher S.G., Peterson D.R., Haley J.M., Nazar M.D., Rich S.A., Berlau D.J., Peltz C.B., Tan M.T., Kawas C.H., Federoff H.J. 2014. Plasma phospholipids identify antecedent memory impairment in older adults. Nat. Med. 20, 415–418.
  131. Goodenowe D.B., Cook L.L., Liu J., Lu Y., Jayasinghe D.A., Ahiahonu P.W.K., Heath D., Yamazaki Y., Flax J., Krenitsky K.F., Sparks D.L., Lerner A., Friedland R.P., Kudo T., Kamino K., Morihara T., Takeda M., Wood P.L. 2007. Peripheral ethanolamine plasmalogen deficiency: A logical causative factor in Alzheimer’s disease and dementia. J. Lipid Res. 48, 2485–2498.
  132. González-Domínguez R., García-Barrera T., Gómez-Ariza J.L. 2014. Combination of metabolomic and phospholipid-profiling approaches for the study of Alzheimer’s disease. J. Proteomics. 104, 37–47.
  133. Dorninger F., Moser A.B., Kou J., Wiesinger C., Forss-Petter S., Gleiss A., Hinterberger M., Jungwirth S., Fischer P., Berger J. 2018. Alterations in the plasma levels of specific choline phospholipids in Alzheimer’s disease mimic accelerated aging. J. Alzheimers Dis. 62, 841–854. https://doi.org/10.3233/JAD-171036
  134. Girotti A.W., Kriska T. 2004. Role of lipid hydroperoxides in photo-oxidative stress signaling. Antioxid. Redox Signal. 6, 301–310.
  135. Scholte B.J., Horati H., Veltman M., Vreeken R.J., Garratt L.W., Tiddens H.A.W.M., Janssens H.M., Stick S.M. 2019. Oxidative stress and abnormal bioactive lipids in early cystic fibrosis lung disease. J. Cyst. Fibros. 18, 781–789.
  136. Chernomordik L., Chanturiya A., Green J., Zimmerberg J. 1995. The hemifusion intermediate and its conversion to complete fusion: Regulation by membrane composition. Biophys. J. 69, 922–929.
  137. Khandelia H., Loubet B., Olzyńska A., Jurkiewicz P., Hof M. 2014. Pairing of cholesterol with oxidized phospholipid species in lipid bilayers. Soft Matter. 10, 639–647.
  138. Aureli M., Grassi S., Prioni S., Sonnino S., Prinetti A. 2015. Lipid membrane domains in the brain. Biochim. Biophys. Acta. 1851, 1006–1016.
  139. Fantini J., Yahi N. 2011. Molecular basis for the glycosphingolipid-binding specificity of α-synuclein: Key role of tyrosine 39 in membrane insertion. J. Mol. Biol. 408, 654–669.
  140. Di Scala C., Yahi N., Boutemeur S., Flores A., Rodriguez L., Chahinian H., Fantini J. 2016. Common molecular mechanism of amyloid pore formation by Alzheimer’s β-amyloid peptide and α-synuclein. Sci. Rep. 6, 28781.
  141. Yu R.K., Nakatani Y., Yanagisawa M. 2009. The role of glycosphingolipid metabolism in the developing brain. J. Lipid Res. 50 Suppl, S440–S445.
  142. Segler-Stahl K., Webster J.C., Brunngraber E.G. 1983. Changes in the concentration and composition of human brain gangliosides with aging. Gerontology. 29, 161–168.
  143. Svennerholm L., Boström K., Helander C.G., Jungbjer B. 1991. Membrane lipids in the aging human brain. J. Neurochem. 56, 2051–2059.
  144. Svennerholm L., Boström K., Jungbjer B., Olsson L. 1994. Membrane lipids of adult human brain: Lipid composition of frontal and temporal lobe in subjects of age 20 to 100 years. J. Neurochem. 63, 1802–1811.
  145. Chapman J., Sela B.A., Wertman E., Michaelson D.M. 1988. Antibodies to ganglioside GM1 in patients with Alzheimer’s disease. Neurosci. Lett. 86, 235–240.
  146. Brooksbank B.W., McGovern J. 1989. Gangliosides in the brain in adult Down’s syndrome and Alzheimer’s disease. Mol. Chem. Neuropathol. 11, 143–156.
  147. Crino P.B., Ullman M.D., Vogt B.A., Bird E.D., Volicer L. 1989. Brain gangliosides in dementia of the Alzheimer type. Arch. Neurol. 46, 398–401.
  148. Das T., Sa G., Hilston C., Kudo D., Rayman P., Biswas K., Molto L., Bukowski R., Rini B., Finke J.H., Tannenbaum C. 2008. GM1 and tumor necrosis factor-alpha, overexpressed in renal cell carcinoma, synergize to induce T-cell apoptosis. Cancer Res. 68, 2014–2023.
  149. Hayashi H., Kimura N., Yamaguchi H., Hasegawa K., Yokoseki T., Shibata M., Yamamoto N., Michikawa M., Yoshikawa Y., Terao K., Matsuzaki K., Lemere C.A., Selkoe D.J., Naiki H., Yanagisawa K. 2004. A seed for Alzheimer amyloid in the brain. J. Neurosci. 24, 4894–4902.
  150. Ariga T., McDonald M.P., Yu R.K. 2008. Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease–a review. J. Lipid Res. 49, 1157–1175.https://doi.org/10.1194/jlr.R800007-JLR200
  151. Yamamoto N., Matsubara T., Sato T., Yanagisawa K. 2008. Age-dependent high-density clustering of GM1 ganglioside at presynaptic neuritic terminals promotes amyloid β-protein fibrillogenesis. Biochim. Biophys. Acta, Biomembr. 1778, 2717–2726. https://doi.org/10.1016/j.bbamem.2008.07.028
  152. Di Scala C., Yahi N., Lelièvre C., Garmy N., Chahinian H., Fantini J. 2013. Biochemical identification of a linear cholesterol-binding domain within Alzheimer’s β amyloid peptide. ACS Chem. Neurosci. 4, 509–517.
  153. Yu X., Zheng J. 2012. Cholesterol promotes the interaction of Alzheimer β-amyloid monomer with lipid bilayer. J. Mol. Biol. 421, 561–571.
  154. Bao R., Li L., Qiu F., Yang Y. 2011. Atomic force microscopy study of ganglioside GM1 concentration effect on lateral phase separation of sphingomyelin/dioleoylphosphatidylcholine/cholesterol bilayers. J. Phys. Chem. B. 115, 5923–5929.
  155. Galimzyanov T.R., Lyushnyak A.S., Aleksandrova V.V., Shilova L.A., Mikhalyov I.I., Molotkovskaya I.M., Akimov S.A., Batishchev O.V. 2017. Line activity of ganglioside GM1 regulates the raft size distribution in a cholesterol-dependent manner. Langmuir. 33, 3517–3524.
  156. Ladisch S., Kitada S., Hays E.F. 1987. Gangliosides shed by tumor cells enhance tumor formation in mice. J. Clin. Invest. 79, 1879–1882.
  157. Heitger A., Ladisch S. 1996. Gangliosides block antigen presentation by human monocytes. Biochim. Biophys. Acta. 1303, 161–168.
  158. Staneva G., Chachaty C., Wolf C., Quinn P.J. 2010. Comparison of the liquid-ordered bilayer phases containing cholesterol or 7-dehydrocholesterol in modeling Smith–Lemli–Opitz syndrome. J. Lipid Res. 51, 1810–1822. https://doi.org/10.1194/jlr.M003467
  159. Staneva G., Osipenko D.S., Galimzyanov T.R., Pavlov K.V., Akimov S.A. 2016. Metabolic precursor of cholesterol causes formation of chained aggregates of liquid-ordered domains. Langmuir. 32, 1591–1600.
  160. Heftberger P., Kollmitzer B., Rieder A.A., Amenitsch H., Pabst G. 2015. In situ determination of structure and fluctuations of coexisting fluid membrane domains. Biophys. J. 108, 854–862.
  161. Marsh D. 2009. Cholesterol-induced fluid membrane domains: A compendium of lipid-raft ternary phase diagrams. Biochim. Biophys. Acta. 1788, 2114–2123.
  162. Rinia H.A., Snel M.M.E., van der Eerden J.P.J.M., de Kruijff B. 2001. Visualizing detergent resistant domains in model membranes with atomic force microscopy. FEBS Lett. 501, 92–96.
  163. García-Sáez A.J., Chiantia S., Schwille P. 2007. Effect of line tension on the lateral organization of lipid membranes. J. Biol. Chem. 282, 33 537–33 544. https://doi.org/10.1074/jbc.M706162200
  164. Khadka N.K., Ho C.S., Pan J. 2015. Macroscopic and nanoscopic heterogeneous structures in a three-component lipid bilayer mixtures determined by atomic force microscopy. Langmuir. 31, 12417–12425.
  165. Trabelsi S., Zhang S., Lee T.R., Schwartz D.K. 2008. Linactants: Surfactant analogues in two dimensions. Phys. Rev. Lett. 100, 037802.
  166. Brewster R., Safran S.A. 2010. Line active hybrid lipids determine domain size in phase separation of saturated and unsaturated lipids. Biophys. J. 98, L21–L23.
  167. Galimzyanov T.R., Molotkovsky R.J., Bozdaganyan M.E., Cohen F.S., Pohl P., Akimov S.A. 2015. Elastic membrane deformations govern interleaflet coupling of lipid-ordered domains. Phys. Rev. Lett. 115, 088101.
  168. Pinigin K.V., Kondrashov O.V., Jiménez-Munguía I., Alexandrova V.V., Batishchev O.V., Galimzyanov T.R., Akimov S.A. 2020. Elastic deformations mediate interaction of the raft boundary with membrane inclusions leading to their effective lateral sorting. Sci. Rep. 10, 4087.
  169. O’Brien J.S., Sampson E.L. 1965. Lipid composition of the normal human brain: Gray matter, white matter, and myelin. J. Lipid Res. 6, 537–544.
  170. Yanagisawa K., Odaka A., Suzuki N., Ihara Y. 1995. GM1 ganglioside-bound amyloid beta-protein (A beta): A possible form of preamyloid in Alzheimer’s disease. Nat. Med. 1, 1062–1066.
  171. Amaro M., Šachl R., Aydogan G., Mikhalyov I.I., Vácha R., Hof M. 2016. GM1 Ganglioside inhibits β-amyloid oligomerization induced by sphingomyelin. Angew. Chem. Int. Ed. Engl. 55 (32), 9411–9415. https://doi.org/10.1002/anie.201603178
  172. Cebecauer M., Hof M., Amaro M. 2017. Impact of GM1 on membrane-mediated aggregation/oligomerization of β-amyloid: Unifying view. Biophys. J. 113, 1194–1199.
  173. Šachl R., Amaro M., Aydogan G., Koukalová A., Mikhalyov I.I., Boldyrev I.A., Humpolíčková J., Hof M. 2015. On multivalent receptor activity of GM1 in cholesterol containing membranes. Biochim. Biophys. Acta. 1853, 850–857.
  174. Knuplez E., Curcic S., Theiler A., Bärnthaler T., Trakaki A., Trieb M., Holzer M., Heinemann A., Zimmermann R., Sturm E.M., Marsche G. 2020. Lysophosphatidylcholines inhibit human eosinophil activation and suppress eosinophil migration in vivo. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids. 1865, 158686. https://doi.org/10.1016/j.bbalip.2020.158686
  175. Ma M.-T., Yeo J.-F., Farooqui A.A., Zhang J., Chen P., Ong W.-Y. 2010. Differential effects of lysophospholipids on exocytosis in rat PC12 cells. J. Neural. Transm. 117, 301–308.
  176. Wang D., Zheng W. 2015. Dietary cholesterol concentration affects synaptic plasticity and dendrite spine morphology of rabbit hippocampal neurons. Brain Res. 1622, 350–360.
  177. Jose M., Sivanand A., Channakeshava C. 2021. Membrane cholesterol is a critical determinant for hippocampal neuronal polarity. Front. Mol. Neurosci. 14, 746211.
  178. Furukawa K., Ohmi Y., Tajima O., Ohkawa Y., Kondo Y., Shuting J., Hashimoto N., Furukawa K. 2018. Gangliosides in inflammation and neurodegeneration. Prog. Mol. Biol. Transl. Sci. 156, 265–287.
  179. Sandhoff K., Harzer K. 2013. Gangliosides and gangliosidoses: Principles of molecular and metabolic pathogenesis. J. Neurosci. 33, 10195–101208.
  180. Fusco M., Vantini G., Schiavo N., Zanotti A., Zanoni R., Facci L., Skaper S.D. 1993. Gangliosides and neurotrophic factors in neurodegenerative diseases: From experimental findings to clinical perspectives. Ann. N.Y. Acad. Sci. 695, 314–317. https://doi.org/10.1111/j.1749-6632.1993.tb23074.x

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (519KB)

Copyright (c) 2023 В.Д. Краснобаев, О.В. Батищев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies