Interferon α2b As a Modulator of the Afferent Glutamatergic Synapse of the Frog Vestibular Apparatus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Reportedly, the innate and adaptive immunity molecules can modulate the synaptic activity of the central nervous system. Interferons are widely used in the treatment of oncological and viral diseases. Even though interferons are classified as ototoxic substances, the mechanism of their effect on the synaptic activity of the inner ear remains unexplored. Here, we analyzed modulating influences of interferon α2b (IFN-α2b) on the function of afferent glutamatergic synapse in the conditions of drug application to the synaptic zone. The experiments were performed on the isolated vestibular apparatus of a frog (Rana temporaria) using an electrophysiological method. IFN-α2b (0.2–40 ng/mL) caused an increase in the background pulse activity of afferent fibers, followed by a decrease in the frequency of discharges, usually at high concentrations of the interferon. Besides, IFN-α2b decreased the glutamate (L-Glu) evoked response and modulated the level of afferent fiber activity restored by L-Glu under the conditions of blockade of the glutamate release from hair cells in hyper-Mg2+ and hypo-Ca2+ solution. This suggests the postsynaptic effect of IFN-α2b. The presented data indicate the neuromodulating effect of interferon on the synaptic activity of the afferent synapse of the vestibular apparatus.

About the authors

I. V. Ryzhova

Pavlov Institute of Physiology, Russian Academy of Sciences

Author for correspondence.
Email: ireneryzhova@mail.ru
Russia, 199034, St. Petersburg

E. A. Korneva

Institute of Experimental Medicine

Email: ireneryzhova@mail.ru
Russia, 197376, St. Petersburg

T. V. Tobias

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: ireneryzhova@mail.ru
Russia, 199034, St. Petersburg

E. A. Protasov

Institute of Experimental Medicine

Email: ireneryzhova@mail.ru
Russia, 197376, St. Petersburg

E. A. Vershinina

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: ireneryzhova@mail.ru
Russia, 199034, St. Petersburg

References

  1. Wang B.X., Fish E.N. 2019. Global virus outbreaks: Interferons as 1st responders. Semin. Immunol. 43, 101300. https://doi.org/10.1016/j.smim.2019.101300
  2. Mehta S., Mukherjee S., Balasubramanian D., Chowdhary A. 2014. Evaluation of neuroimmunomodulatory activity of recombinant human interferon α. Neuroimmunomodulation. 2014. 21 (5), 250–256. https://doi.org/10.1159/000357309
  3. Zhang L.J. 2019. Type1 interferons potential initiating factors linking skin wounds with psoriasis pathogenesis. Front. Immunol. 10, 1440. https://doi.org/10.3389/fimmu.2019.01440
  4. Lasfar A., Abushahba W., Balan M., Cohen-Solal K.A. 2011. Interferon Lambda: A new sword in cancer immunotherapy. Clin. Dev. Immunol. 2011, 349575. https://doi.org/10.1155/2011/349575
  5. Stiff A., Carson W. 2015. Investigations of interferon-lambda for the treatment of cancer. J. Innate Immun. 7 (3), 243–250. https://doi.org/10.1159/000370113
  6. Klinkhammer J., Schnepf D., Ye L., Schwaderlapp M., Gad H.H., Hartmann R., Garcin D., Mahlakõiv T., Staeheli P. 2018. IFN-λ prevents influenza virus spread from the upper airways to the lungs and limits virus transmission. eLife. 7. e33354. https://doi.org/10.7554/eLife.33354
  7. Smith K.J., Norris S., O’Farrelly C., O’Mara S.M. 2011. Risk factors for the development of depression in patients with hepatitis C taking interferon-α. Neuropsychiatr. Dis. Treat. 7, 275–292. https://doi.org/10.2147/NDT.S13917
  8. Udina M., Castellví P., Moreno-España J., Navinés R., Valdés M., Forns X., Langohr K., Solà R., Vieta E., Martín-Santos R. 2012. Interferon-induced depression in chronic hepatitis C: A systematic review and meta-analysis. J. Clin. Psychiatry. 73 (8), 1128–1138. https://doi.org/10.4088/JCP.12r07694
  9. Haji Abdolvahaba M., Moradi-Kalbolandi S., Zarei M., Bose D., Majidzadeh-A K., Farahmand L. 2021. Potential role of interferons in treating COVID-19 patients. Int. Immunopharmacol. 90, 107171. https://doi.org/10.1016/j.intimp.2020.107171
  10. Medhat E., Esmat G., Hamza E., Aziz A.A., Fathalah W.F., Darweesh S.K., Zakaria Z., Mostafa S. 2016. Ophthalmological side effects of interferon therapy of chronic hepatitis C. Hepatobiliary Surg. Nutr. 5 (3), 209–216.
  11. Mendes-Corrêa M.C.J., Bittar R.S., Salmito N., Oiticica J. 2011. Pegylated interferon/ribavirin-associated sudden hearing loss in a patient with chronic hepatitis C in Brazil. Braz. J. Infect. Dis. 15 (1), 87–89.
  12. Sharifian M.R., Kamandi S., Sima H.R., Zaringhalam M.A., Bakhshaee M. 2013. INF-α and ototoxicity. Biomed. Res. Int. 2013, 295327. https://doi.org/10.1155/2013/295327
  13. Guth P.S., Perin P., Norris C.H., Valli P. 1998. The vestibular hair cells: Post-transductional signal processing. Prog. Neurobiol. 54 (2), 193–247.
  14. Vega R., Soto E. 2003. Opioid receptors mediate a postsynaptic facilitation and a presynaptic inhibition at the afferent synapse of axolotl vestibular hair cells. Neuroscience. 118 (1), 75–85. https://doi.org/10.1016/s0306-4522(02)00971-5
  15. Andrianov G.N., Ryzhova I.V., Tobias T.V. 2009. Dopaminergic modulation of afferent synaptic transmission in the semicircular canals of frog. Neurosignals. 17 (3), 222–228.
  16. Holt J.C., Jordan P.M., Lysakowski A., Shah A., Barsz K., Contini D. 2017. Muscarinic acetylcholine receptors and M-currents underlie efferent-mediated slow excitation in calyx- bearing vestibular afferents. J. Neurosci. 37 (7), 1873–1887.
  17. Poppi L.A., Holt J.C., Lim R., Brichta A.M. 2020. A review of efferent cholinergic synaptic transmission in the vestibular periphery and its functional implications. J. Neurophysiol. 123 (2), 608–629. https://doi.org/10.1152/jn.00053.2019
  18. Farrar W.L., Hill J.M., Harel-Bellan A., Vinocour M. 1987. The immune logical brain. Immunol. Rev. 100, 361–378. https://doi.org/10.1111/j.1600-065x.1987.tb00539.x
  19. Flook M., Frejo L., Gallego-Martinez A., Martin-Sanz E., Rossi-Izquierdo M., Amor-Dorado J.C., Soto-Varela A., Santos-Perez S., Batuecas-Caletrio A., Espinosa-Sanchez J.M., Pérez-Carpena P., Martinez-Martinez M., Aran I., Lopez-Escamez J.A. 2019. Differential proinflammatory signature in vestibular migraine and meniere disease. Front. Immunol. 10, 1229. https://doi.org/10.3389/fimmu.2019.01229
  20. Cohen B., Novick D., Barak S, Rubinstein M. 1995. Ligand-induced association of the type I interferon receptor components. Mol. Cell. Biol. 15 (8), 4208–4214. https://doi.org/10.1128/MCB.15.8.4208
  21. Liu C.C., Gao Y.J., Luo H., Berta T., Xu Z.Z., Ji R.R., Tan P.H. 2016. Interferon alpha inhibits spinal cord synaptic and nociceptive transmission via neuronal-glial interactions. Sci. Rep. 6. 34356. https://doi.org/10.1038/srep34356
  22. Dafny N., Prieto-Gomez B., Dong W.Q., Reyes-Vazquez C. 1996. Interferon modulates neuronal activity recorded from the hypothalamus, thalamus, hippocampus, amygdala and the somatosensory cortex. Brain Res. 734 (1–2), 269–274.
  23. Mendoza-Fernández V., Andrew R.D., Barajas-López C. 2000. Interferon-alpha inhibits long-term potentiation and unmasks a long-term depression in the rat hippocampus. Brain Res. 885 (1), 14–24. https://doi.org/10.1016/s0006-8993(00)02877-8
  24. Bonsacquet J., Brugeaud A., Compan V., Desmadryl G., Chabbert C. 2006. AMPA type glutamate receptor mediates neurotransmission at turtle vestibular calyx synapse. J. Physiol. 576 (Pt. 1), 63–71.
  25. Sterling P., Matthews G. 2005. Structure and function of ribbon synapses. Trends Neurosci. 28. 20–29.
  26. Safieddine S., El-Amraoui A., Petit C. 2012. The auditory hair cell ribbon synapse: From assembly to function. Annu. Rev. Neurosci. 35, 509–528. https://doi.org/10.1146/annurev-neuro-061010-113705
  27. Qin Z.F., Hou D.Y., Fang Y.Q., Xiao H.J., Wang J., Li K.C. 2012. Interferon-alpha enhances excitatory transmission in substantia gelatinosa neurons of rat spinal cord. Neuroimmunomodulation. 19 (4), 235–240. https://doi.org/10.1159/000335167
  28. Панченко Л.Ф., Алябьева Т.Н., Малиновская В.В., Балашов А.М. 1987. Взаимодействие альфа-интерферона с опиатными рецепторами в мозге крыс. Бюлл. экспер. биол. мед. 104 (7), 87–89.
  29. Wang J.Y., Zeng X.Y., Fan G.X., Yuan Y.K., Tang J.S. 2006. mu- but not delta- and kappa-opioid receptor mediates the nucleus submedius interferon-alpha-evoked antinociception in the rat. Neurosci. Lett. 397 (3), 254–258. https://doi.org/10.1016/j.neulet.2005.12.046
  30. Di Filippo M., Tozzi A., Sara Arcangeli S., de Iure A., Durante V., Di Gregorio M., Gardoni F., Calabresi P. 2016. Interferon -β1a modulates glutamate neurotransmission in the CNS through CaMKII and GluN2A-containing NMDA receptors. Neuropharmacology. 100, 98–105.
  31. Hosseini S., Michaelsen-Preusse K., Grigoryan G., Chhatbar C., Kalinke U., Korte M. 2020. Type I interferon receptor signaling in astrocytes regulates hippocampal synaptic plasticity and cognitive function of the healthy CNS. Cell Rep. 31 (7), 107666. https://doi.org/10.1016/j.celrep.2020.107666

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (126KB)
3.

Download (134KB)
4.

Download (58KB)
5.

Download (111KB)
6.

Download (32KB)

Copyright (c) 2023 The Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies