Effects of Human Chorionic Gonadotropin on Differentiation and Functional Activity of Myeloid-Derived Suppressor Cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of recombinant human chorionic gonadotropin (hCG) at concentrations of 10 and 100 MU/mL, typical for pregnancy, on differentiation and functional activity of myeloid-derived suppressor cells (MDSCs) was investigated. The subject of the study was isolated cells CD11b+ that acquired the MDSC phenotype as a result of two-step activation with cytokines GM-CSF and IL-1β and lipopolysaccharide (LPS). It was shown that hCG at both concentrations significantly increased the total MDSC pool and at a lower concentration (10 IU/mL) promoted differentiation of the M-MDSC subpopulation. At the same time, 100 MU/mL hCG had no effect on the expression of arginase-1 and indolamine-2,3-dioxygenase (IDO) in MDSCs, but at a concentration of 10 IU/mL there was a tendency to increase IDO expression under the influence of hCG. When the cytokine profile was evaluated by multiplex analysis using Luminex xMAP technology, it was found that hCG did not modulate cytokine production in the CD11b+ cell culture. Thus, this work demonstrates for the first time that hCG can induce MDSC differentiation.

About the authors

K. Yu. Shardina

Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: Shardinak@gmail.com
Russia, 614081, Perm

V. P. Timganova

Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences

Email: Shardinak@gmail.com
Russia, 614081, Perm

M. S. Bochkova

Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences

Email: Shardinak@gmail.com
Russia, 614081, Perm

S. V. Uzhviyuk

Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences

Email: Shardinak@gmail.com
Russia, 614081, Perm

S. A. Zamorina

Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences

Email: Shardinak@gmail.com
Russia, 614081, Perm

References

  1. Lutz M.B., Eckert I.N. 2021. Comments on the ambiguity of selected surface markers, signaling pathways and omics profiles hampering the identification of myeloid-derived suppressor cells. Cell. Immunol. 364, 104347. https://doi.org/10.1016/j.cellimm.2021.104347
  2. Köstlin N., Kugel H., Spring B. Leiber A., Marmé A., Henes M., Rieber N., Hartl D., Poets C.F., C. Gille. 2014. Granulocytic myeloid derived suppressor cells expand in human pregnancy and modulate T-cell responses: Cellular immune response. Eur. J. Immunol. 44 (9), 2582–2591. https://doi.org/10.1002/eji.201344200
  3. Пономарев А.В. 2016. Миелоидные супрессорные клетки: общая характеристика. Иммунология. 37 (1), 47–50.
  4. Ostrand-Rosenberg S. 2018. Myeloid derived-suppressor cells: Their role in cancer and obesity. Curr. Opin. Immunol. 51, 68–75. https://doi.org/10.1016/j.coi.2018.03.007
  5. Kumar V. Patel S., Tcyganov E., Gabrilovich D. 2016. The Nature of myeloid-derived suppressor cells in the tumor microenvironment. Trend. Immunol. 37, 208–220. https://doi.org/10.1016/j.it.2016.01.004
  6. Nair R.R., Sinha P., Khanna A., Singh K. 2015. Reduced myeloid-derived suppressor cells in the blood and endometrium is associated with early miscarriage. Am. J. Reprod. Immunol. 73 (6), 479–486. https://doi.org/10.1111/aji.1235
  7. Харченко Е.П. 2011. Толерантность матери и плода как проявление регуляторного континуума и пластичности их иммунных систем. Мед. иммунология. 13 (2–3), 121–132. https://doi.org/10.15789/1563-0625-2011-2-3-121-132
  8. Paulesu L., Rao C.V., Ietta F., Pietropolli A., Ticconi C. 2018. hCG and Its disruption by environmental contaminants during human pregnancy. Int. J. Mol. Sci. 19 (3), 914. https://doi.org/10.3390/ijms19030914
  9. Giaglis S., Stoikou M., Grimolizzi F., Subramanian B.Y., Shane V.B., Hoesli I., Lapaire O., Hasler P., Than N.G., Hahn S. Neutrophil migration into the placenta: Good, bad or deadly? Cell Adh. Migr. 10 (1–2), 208–225. https://doi.org/10.1080/19336918.2016.1148866
  10. Hahn S., Giaglis S., Hoesli I., Hasler P. 2012. Neutrophil NETs in reproduction: From infertility to preeclampsia and the possibility of fetal loss. Front. Immunol. 3, 362. https://doi.org/10.3389/fimmu.2012.00362
  11. Rami D., La Bianca C. Zauli G., Radillo O., Bulla R. 2014. The First trimester gravid serum regulates procalcitonin expression in human macrophages skewing their phenotype in vitro. Mediators Inflam. 2014. 1–10. https://doi.org/10.1155/2014/248963
  12. Furcron A., Romero R., Mial T. N. [et al.]. 2016. Human chorionic conadotropin has anti-inflammatory effects at the maternal-fetal interface and prevents endotoxin-induced preterm birth, but causes dystocia and fetal compromise in mice. Biol. Reprod. 94 (6), 1–13. https://doi.org/10.1095/biolreprod.116.139345
  13. Gaynor L.M., Colucci F. 2017. Uterine natural killer cells: Functional distinctions and influence on pregnancy in humans and mice. Front. Immunol. 8, 467. https://doi.org/10.3389/fimmu.2017.00467
  14. Tsampalas M., Gridelet V., Berndt S. Foidart J-M., Geenen V., Hauterive S.P. 2010. Human chorionic gonadotropin: a hormone with immunological and angiogenic properties. J. Reprod. Immunol. 85 (1), 93–98. https://doi.org/10.1016/j.jri.2009.11.008
  15. Zamorina S.A., Shirshev S.V. 2013. Human chorionic gonadotropin is a factor in the induction of immune tolerance in pregnancy. Immunologia. 34 (2), 105–107.
  16. Заморина С.А., Шардина К.Ю., Тимганова В.П., Бочкова М.С., Ужвиюк С.В., Раев М.Б., Черешнев В.А. 2021. Влияние альфа-фетопротеина на дифференцировку миелоидных супрессорных клеток. Доклады Российской академии наук. Науки о жизни. 501 (1), 569–572. https://doi.org/10.31857/S2686738921060184
  17. Cole L.A. 2012. hCG, the wonder of today’s science. Reprod. Biol. Endocrinol. 10 (1), 24. https://doi.org/10.1186/1477-7827-10-24
  18. Hu C., Zhen Y., Pang B., Lin X., Yi H. 2019. Myeloid-derived suppressor cells are regulated by estradiol and are a predictive marker for IVF outcome. Front. Endocrinol. (Lausanne). 10, 521. https://doi.org/10.3389/fendo.2019.00521
  19. Pan T., Zhong L., Wu S., Cao Y., Yang Q., Cai Z., Cai X., Zhao W., Ma N, Zhang W. 2016. 17β-Oestradiol enhances the expansion and activation of myeloid-derived suppressor cells via signal transducer and activator of transcription (STAT)-3 signalling in human pregnancy. Clin. Exp. Immunol. 185 (1), 86–97.
  20. Fallarino F., Grohmann U., Bianchi V.C.R., Orabona C., Spreca A., Fioretti M.C., Puccetti P. 2002. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 9 (10), 1069–1077. https://doi.org/10.1038/sj.cdd.4401073
  21. Fletcher M., Ramirez M., Sierra R.A., Raber P., Thevenot P., Khami A.A., Sanchez-Pino D., Hernandez C., Wyczechowska D.D., Ochoa A.C., Rodriguez P.C. 2015. l-Arginine depletion blunts antitumor T-cell responses by inducing myeloid-derived suppressor cells. Cancer Res. 75 (2), 275–283. https://doi.org/10.1158/0008-5472.CAN-14-1491
  22. Bansal V., Ochoa J.B. 2003. Arginine availability, arginase, and the immune response. Curr. Opin. Clin. Nutr. Metab. Care. 6, 223–228. https://doi.org/10.1097/00075197-200303000-00012
  23. Cook P.C., Jones L.H., Jenkins S.J., Wynn T.A., Allen J.E., MacDonald A.S. 2012. Alternatively activated dendritic cells regulate CD4+ T-cell polarization in vitro and in vivo. Proc. Natl. Acad. Sci. USA. 109, 9977–9982. https://doi.org/10.1073/pnas.1121231109
  24. Bronte V., Cingarlini S., Apolloni E., Serafini P., Marigo I., De Santo C., Macino B., Marin O., Zanovello P. 2003. Effective genetic vaccination with a widely shared endogenous retroviral tumor antigen requires CD40 stimulation during tumor rejection phase. J. Immunol. 171, 6396–6405.
  25. Bian Z., Abdelaal A.M., Shi L., Liang H., Xiong L., Kidder K., Venkataramani M., Culpepper C., Zen K., Liu Y. 2018. Arginase-1 is neither constitutively expressed in nor required for myeloid-derived suppressor cell-mediated inhibition of T-cell proliferation. Eur. J. Immunol. 48 (6), 1046–1058. https://doi.org/10.1002/eji.201747355
  26. Saito S., Nakashima A., Shima T., Mika I. 2010. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am. J. Reprod. Immunol. 63 (6), 601–610. https://doi.org/10.1111/j.1600-0897.2010.00852
  27. Mauti L.A., Le Bitoux M., Baumer K. 2011. Myeloid-derived suppressor cells are implicated in regulating permissiveness for tumor metastasis during mouse gestation. J. Clin. Invest. 121 (7), 2794–2807. https://doi.org/10.1172/JCI41936
  28. Underwood J.L., Ruszkiewicz M., Barnden K.L. 1985. Does antigenic modulation cause the absence of major histocompatibility complex antigens on the syncytiotrophoblast? Transplant. Proc. 17, 921–924.
  29. Тимганова В.П., Шардина, К.Ю., Бочкова М.С., Ужвиюк С.В., Усанина Д.И., Заморина С.А. 2023. Влияние трофобластического β1-гликопротеина на дифференцировку миелоидных супрессорных клеток. Мед. иммунология. 25 (3), 1179–1186. https://doi.org/10.15789/1563-0625-EOP-2838
  30. Заморина С.А., Тимганова В.П., Бочкова М.С., Шардина К.Ю., Ужвиюк С.В., Храмцов П.В., Кропанева М.Д., Раев М.Б. 2021. Роль гликоделина в регуляции дифференцировки миелоидных супрессорных клеток. Мед. иммунология. 23 (4), 641–646. https://doi.org/10.15789/1563-0625-ROG-2209
  31. Шардина К.Ю., Заморина С.А., Тимганова В.П., Бочкова М.С., Ужвиюк С.В., Черешнев В.А. 2023. Альфа-фетопротеин как фактор дифференцировки и функциональной активности миелоидных супрессорных клеток. Клеточные технологии в биологии и медицине. (В печати).
  32. Шардина К.Ю., Заморина С.А., Раев М.Б., Черешнев В.А. 2022. Роль миелоидных супрессорных клеток в процессах формирования иммунной толерантности в период беременности. Цитология. 64 (2), 116. https://doi.org/10.31857/S0041377122020067

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (426KB)
3.

Download (111KB)
4.

Download (162KB)

Copyright (c) 2023 К.Ю. Шардина, В.П. Тимганова, М.С. Бочкова, С.В. Ужвиюк, С.А. Заморина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies